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Abstract

Long scenes can be imaged by mosaicing multiple images from cameras scanning the

scene. We address the case of a video camera scanning a scene while moving in a long path,

e.g. scanning a city street from a driving car, or scanning a terrain from a low flying aircraft.

A robust approach to this task is presented, which is applied successfully to sequences

having thousands of frames even when using a hand-held camera. Examples are given on a

few challenging sequences. The proposed system consists of two components: (i) Motion and

depth computation. (ii) Mosaic rendering.

In the first part a ”direct” method is presented for computing motion and dense depth.

Robustness of motion computation has been increased by limiting the motion model for the

scanning camera. An iterative graph-cuts approach, with planar labels and a flexible similarity

measure, allows the computation of a dense depth for the entire sequence.

In the second part a new minimal aspect distortion (MAD) mosaicing uses depth to min-

imize the geometrical distortions of long panoramic images. In addition to MAD mosaicing,

interactive visualization using X-Slits is also demonstrated.

∗This research was supported by the Israel Science Foundation. Video examples and high resolution images can

be viewed in http://www.vision.huji.ac.il/mad/
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1 Introduction

Many mosaicing applications involve long image sequences taken by translating cameras scan-

ning a long scene. This includes a video camera mounted on a vehicle scanning city streets

[25, 1, 30, 35, 32], or a video camera mounted on a low altitude aircraft scanning a terrain [36]. We

present a direct method to compute camera motion and dense depth that are needed for this mo-

saicing. The computed motion and depth information are used for two visualization approaches.

(i) A new Minimal Aspect Distortion (MAD) mosaicing of the scene. (ii) An immersive 3D visu-

alization using X-Slits [37].

MAD mosaicing is using the motion and depth information to create mosaic images where

distortion of objects is minimal. Mosaicing from translating cameras normally gives pushbroom

distortions, where far away objects become wider and closer objects become narrower. In MAD

mosaicing the appearance of objects in the mosaic is closer to their appearance in the original

images, avoiding as much as possible the pushbroom distortion. While MAD mosaicing reduces

local distortions, it may not be convenient for the generation of new views. This can be done by

X-Slits mosaicing, allowing interactive changes of viewpoint and viewing direction.

The effectiveness of the proposed approach is demonstrated by processing several video se-

quences taken from moving cars and from helicopters. Long MAD mosaics, and a few fly through

videos using X-Slits, are presented online in http://www.vision.huji.ac.il/mad.

While the proposed computation of camera motion is accurate, depth may not be computed

accurately for many scene points. Occlusions, low contrast, varying illumination, and reflections

will always leave many scene points with no depth values, or even with a wrong depth. Traditional

model based rendering approaches may fail when depth is not accurate everywhere. But since

image based rendering such as MAD mosaicing and X-Slits projection use only statistics of depth,

such problems can be avoided.

The proposed approach uses only image data, and does not require external motion information.

If motion and/or depth information is available, e.g. when using a GPS or laser scanners, [19, 25],

it could replace or enhance the motion computation part.
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1.1 Overview of Proposed Approach

Panoramic images of long scenes, generated from images taken by a translating camera, are

normally distorted compared to perspective images. When large image segments are used for

stitching a panoramic image, each segment is perspective but the seams between images are appar-

ent due to depth parallax. When narrow strips are used the panoramic image is seamless, but its

projection is normally pushbroom, having aspect distortions. The distortions become very signifi-

cant when the variations in scene depth are large compared to the distance from the camera.

In Section 5 we present ”MAD Mosaicing”, which is a long mosaic having minimum aspect

distortions. It is based on the observation that only the perspective projection is undistorted in

a scene with large depth variations, while for a scene at a constant depth almost any projection

can give an undistorted mosaic. MAD mosaicing changes the panoramic projection depending

on scene structure at each location, minimizing two costs: A distortion cost and a stitching cost.

Minimization is done using dynamic programming.

An alternative visualization method is the X-Slits projection, described in Section 6. Even

though X-Slits images are more distorted, they enable to control the viewpoint and create fly

through sequences. In this case the depth information is mostly needed when handling large dis-

placements, when the stitching process requires better interpolation.

Knowledge of camera motion and dense depth is needed for mosaicing, and this information

can be provided by any source. A robust approach is proposed, alternating between direct ego-

motion computation (Section 3) and depth computation (Section 2). This results in a robust method

to compute both motion and depth, which can overcome large disparities, moving objects, etc.

A general description of the alternation between motion and depth computation is described in

Section 4.

By limiting our analysis to the most common case of a camera moving sideways, motion and

depth can be computed robustly for otherwise ambiguous sequences. We can robustly handle

cameras mounted on moving cars and scanning city streets, down-looking cameras scanning the

ground from a low altitude aircraft, etc. The camera is allowed, of course, to rotate, as rotations

are common in such cases due to the vibrations of the vehicle.
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The computation of camera motion uses a simple variation of the Lucas-Kanade method [5]

that takes into account the estimated scene depth. Given the estimated motion, depth is computed

using a graph cuts approach to detect planar surfaces in the scene. In long image sequences, planar

surfaces that were computed for previous frames are used as priors for the new frames, increas-

ing robustness. Additional robustness is achieved by incorporating a flexible pixel dissimilarity

measure for the graph cuts method. The variations of motion and depth computations that allowed

handling inaccurate inputs are described in Sections 3 and 2.

A note about notation: We use the terms “depth” and “inverse depth” when we actually refer

to “normalized disparity”: The horizontal disparity due to translation, divided by the horizontal

camera translation. This normalized disparity is proportional to the inverse of the depth. The exact

meaning will be clear from the context.

1.2 Related Work

One of the declared benefits of the X-Slits mosaicing is its reduced distortion compared to

pushbroom [10]. But for very long mosaics, the X-Slits images become very close to pushbroom

with its significant distortions. Attempts to reduce the distortion of the long mosaic were presented

in [30, 31], using different X-Slits projections for different scene segments. This work inspired

MAD mosaicing, which extends the piecewise constant approach to a continuous variation of X-

Slits. Another source of inspiration is [33], where a mosaic image is generated by minimizing

a stitching cost using dynamic programming. Other papers on mosaicing of long scenes include

[32, 35], where long mosaics are generated from a narrow slit scanning a scene. In these papers

the camera is assumed to move slowly in a roughly constant velocity, and the scene depth can be

estimated from stationary blur. In [2] a long panorama is stitched from a sparse set of still images,

mainly addressing stitching errors.

The motion and depth computation in this paper is closely related to many intensity based

(“direct”) ego motion computations such as [16, 13]. While these methods recover unrestricted

camera motions, they are relevant only for short sequences since they require an overlapping region

to be visible in all frames. For mosaicing long sequences, a robust motion computation method

is required, which can also handle degenerate cases where general motion can not be recovered.
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In particular, the algorithm should give realistic mosaic images even when no 3D information is

available in large portions of the scene. Earlier versions of our work on ego-motion computation

for sideways moving cameras were proposed in [29, 27]. They had initialization and robustness

problems that are addressed in this paper. In addition, they did not address the computation of

dense depth maps and the creation of undistorted mosaics.

In [1, 30] methods are described for creating a multi-perspective panorama. These methods

recover camera motion using structure-from-motion [14], matching features [23] between pairs of

input images. Matched points are used to recover the camera parameters as well as a sparse cloud

of 3D scene points, recovery that is much easier when fisheye lens are used as in [1]. This is an

opportunity to discuss the differences between our approach and earlier work. The first difference

is the use of a “direct” method rather than using feature point matches. Direct methods can be

preferred when feature points may be rare, ambiguous, or noisy. Feature points will be preferred

in clean, high contrast, and unambiguous imagery.

All mosaicing work can be regarded as a special case of creating a full model of the observed

scene [26]. Having multiple images of the scene theoretically enables both the computation of

camera parameters and the geometric and photometric structure of the scene. As the mosaicing

process is much simpler than the creation of a scene model, it is likely to work in more cases.

Mosaicing works especially well when long scenes are involved, having motion only in one direc-

tion. Even when a scene model has successfully been constructed, the generation of a very long

panoramic image of the entire scene, having minimum distortion, is a challenging problem.

For depth computation we use a variation of the iterative graph cuts approach as described in

[20], which is based on [21, 8]. Instead of extracting constant disparities, we segment the image

into planar surfaces. Combining the graph cuts approach with planar surfaces was described in

[7, 15]. The main differences between [7] and our method is in the initialization of the planar

surfaces and in the extension of the two-frames algorithm to long un-stabilized sequences. A more

detailed discussion can be found in Section 8.
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2 Graph Cuts for Depth Computation (Assuming Known Motion)

Given a stereo image pair, depth can be computed by finding for each pixel in the left image

its corresponding pixel in the right image. Many methods improve stereo computation by incor-

porating the depth consistency between neighboring points. A method that gives excellent results

uses a graph cuts approach to compute depth from stereo [8]. We start by briefly describing the

basic formulation of the graph cuts approach. In Sections 2.1 and 2.2 we describe our variants

on this formulation: defining a flexible data penalty, and using planar surfaces instead of constant

disparities.

Let L be the set of pixels in the left image. In the common graph cuts approach to stereo each

pixel p in the left image is labeled with its disparity fp. A desirable labeling f usually minimizes

the Potts energy [8]:

E(f) =
∑
p∈L

Cp(fp) +
∑

p,q∈N

Vp,qδ(fp �= fq), (1)

where Cp(fp) is a cost for the pixel p to have the disparity fp based on image pair similarity, N

denotes the set of pixel pairs in the left image which are in a neighborhood and δ(·) is 1 if its

argument is true and 0 otherwise. Each Vp,q represents a penalty for assigning different disparities

to neighboring pixels p and q. The value of the penalty Vp,q is smaller for pairs {p, q} with larger
intensity differences |Ip − Iq|.

In stereo computations using the graph cuts approach, it is assumed that disparities can only

have a finite set of values [0, . . . , dmax]. Minimizing the energy in Eq. (1) is still NP-hard, but in

[8] it was shown that using a set of “α-expansion” moves, each finding a minimal cut in a binary

graph, can give good results that are very close to the global optimum.

Following [8] improvements to graph-cuts stereo were introduced in [20, 9]. These include

better handling of occlusions, and symmetrical formulation of stereo. While we used the basic

formulation of [8], the newer approaches can be incorporated into the proposed method if needed.

It should be noted that since we pass the depth values from frame to frame, we need a consistent

description that is independent of the relative motion between frames. Therefore, after computing

the disparities, we normalize them by the camera translation Tx between the two frames (In this

section, we assume that the camera motion is given).
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2.1 Flexible Pixel Dissimilarity Measure for Graph Cuts

Depth computation using iterative the graph cuts approach, as most other stereo computation

methods, assumes one dimensional displacements between input images. This is a valid assump-

tion when accurate image rectification is possible. Rectification needs accurate camera calibration,

where both internal and external camera parameters are known (or can be accurately computed).

However, when the input frames are part of an uncalibrated video sequence, the computed motions

usually accumulate small errors in a few frames. In addition, the internal parameters of the cam-

era are not always known. As a result, methods that assume accurate calibration and rectification

fail for such video sequences. Moreover, the presence of small sub-pixel miss-registrations be-

tween frames not only reduces the accuracy of the computed depth, but usually results in a totally

erroneous depth computation.

A possible way to overcome this problem is by computing a two dimensional optical flow

rather than a one-dimensional optical flow. This approach increases the size of the graph and the

computational complexity. We therefore keep the original structure of the graph using only hori-

zontal displacements, but change the dissimilarity measure to be more tolerant for small vertical

displacements.

2.1.1 Allowing 2D Sub-Pixel Displacements

The first step towards a flexible graph cuts approach is to allow horizontal and vertical sub-pixel

displacements. To do so we extend an idea suggested in [6], where a pixel dissimilarity takes into

account image sampling. Let (x, y) be a coordinates of a pixel in the image I1 and let fp be some

candidate disparity. Instead of using the pixel dissimilarity Cp(fp) = |I1(x, y) − I2(x + fp, y)|,
they suggested the following pixel dissimilarity:

Cp(fp) = min
− 1

2
≤s≤ 1

2

|I1(x, y) − I2(x + fp + s, y)|. (2)

Eq. (2) is more accurate due to the fact that only a discrete set of disparities is possible. When the

sampling of the image values at sub-pixel locations are computed using a linear interpolation, the

above dissimilarity measure can be computed efficiently by:

Cp(fp) = max{0, I1(x, y) − vmax, vmin − I1(x, y)}, (3)

7



(a) (b) (c) (d) (e)

Figure 1: The advantage of using flexible graph cuts. One of two inputs frames is shown in (a). The disparities

computed by the flexible and the regular graph cuts approaches on the original frames are shown in (b) and (c)

respectively. The disparities computed by the flexible and the regular graph cuts approaches after rotating the right

frame by one degree are shown in (d) and (e) respectively (unknown depths are marked in black).

It can be seen that the flexible and regular graph cuts approaches have similar results when using two calibrated frames,

but when one of the images is slightly rotated, the flexible graph cuts approach successfully recovers the disparities

for most of the pixels, while regular graph cuts approach fails.

where vmax and vmin are respectively the maximum and minimum of the two pixel values {I2(x +

fp ± 1
2
, y)}.

To allow sub-pixel vertical displacements, we will further change the range of the target pixel

(x + fp, y) from a 1D interval to a 2D region:

Cp(fp) = min
− 1

2
≤s,r≤ 1

2

|I1(x, y) − I2(x + fp + s, y + r)|, (4)

which can also be efficiently computed, in a similar way to the one dimensional case (Eq. (3)).

2.1.2 Handling Larger Vertical Displacements

The next step is to handle larger vertical displacements. This is most common when having small

rotation about the optical axis, in which case the pixels at the left and right boundaries have large

vertical displacements. Allowing large pixel displacements without any penalty will reduce the

accuracy of the 1D search that overcomes the aperture problem. Therefore, unlike the sub-pixel

displacements, larger displacements have some penalty. Considering all possible vertical displace-
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ments of up to a single pixel, gives our final pixel dissimilarity measure:

Cp(fp, l) = min
− 1

2≤s,r≤ 1
2

|I1(x, y) − I2(x + fp + s, y + r + l)| + |l| · K, (5)

Cp(fp) = min
l∈{−1,0,1}

Cp(fp, l),

where l is a vertical displacement andK is a penalty factor (we used K = 5). Note that for a very

largeK, Eq. (5) reduces to the sub-pixel case in Eq. (4).

The advantage of using the flexible graph cuts approach is demonstrated in Fig.1.

2.2 A Planar Representation of the Scene using Graph Cuts

In the proposed framework depth is computed by the graph cuts approach only for a partial

set of frames, and is propagated to the rest of the frames by depth warping. In order to propagate

depth, it should be accurate and piecewise continuous. The widely used graph cuts methods give

piecewise constant depth values. As a result, they tend to over-segment the image and do not obtain

sub-pixel accuracy.

Instead, we compute a piecewise planar structure, as also suggested by [15, 9, 34, 7]. The main

differences between [7] and our method is in the initialization of the planes and in the extension

of the two-frames algorithm to long un-stabilized sequences. A detailed discussion of important

differences can be found in Section 8.

There are several advantages in using a planar representation of the depth rather than discrete

disparity values: (1) The piecewise planar model gives a better representation of the scene espe-

cially in urban areas. (2) The planar disparity surfaces can be estimated with sub-pixel accuracy,

and therefore can be used to predict the depth even at far away frames without losing its accu-

racy. (3) Description of the depth map with planar surfaces requires a smaller number of segments

compared to constant depths. Having a smaller number of more accurate segments significantly

reduces the number of pixels marked as occlusions due to quantization errors.

The depth of a planar scene surface can be denoted as a′X+b′Y +c′Z+d′ = 0 in the coordinate

system of frame I1. Assuming a perspective projection (x = fX/Z and y = fY/Z, where f is the

focal length) and multiplying the surface equation by f
d′Z yields:

a′

d′x1 +
b′

d′y1 +
fc′

d′ +
f

Z
= 0. (6)
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Dividing by d′ is valid as d′ = 0 only for planes that pass through the focal point, and these

are planes that the camera does not see. Assuming a horizontal camera translation Tx between

frames I1 and I2, the disparity between the corresponding pixels x1 and x2 is x1 − x2 = f Tx

Z

so the normalized disparity x1−x2

Tx
equals the inverse depth f

Z
. From Eq. 6 it can be seen that the

normalized disparity (or inverse depth) of a planar surface in the scene can be expressed as an

affine function in the image coordinates:

x1 − x2

Tx

=
f

Z
= −a′

d′x1 − b′

d′y1 − fc′

d′ . (7)

This formulation suggests that planar surfaces in the world induce affine disparities between the

images (and vice versa). We will refer to planes in the world and “planar” disparities in the image

in the same manner.

The process of computing planar disparities using graph-cuts can be described schematically

as follows:

1. Run regular graph-cuts with constant disparities in the range of [0, . . . , dmax].

2. Find the parameters of a new plane and add them to the planes list.

3. Run the graph cuts method with planar labels from the list (described in Section 2.2.2).

4. Optionally, remove unused planes and return to Step 2.

This general scheme is described in a more detail in the following paragraphs.

2.2.1 Finding Candidate Planes (Steps 1-2)

Our purpose is to determine planes that will be used as labels in the planes-based graph-cuts (Step

3 and Section 2.2.2). A naive way to do so would be to select representatives of all planes, as is

done in the case of constant disparities. However, this is not realistic as the space of all planar

surfaces is too big, and sub-pixel accuracy is required. Therefore, the list of planes should be

determined in a more efficient way.

Many times, an initial list of planes is already available. This is the case, for example, when the

list of planes can be transferred from another image in the sequence where such a list has already
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been computed (See Section 2.3). In other cases, where no initial list of planes is available, we

apply the following scheme:

Step 1: Run regular graph-cuts with constant disparities. These disparities can be viewed as

disparities of planar surfaces:

mi = 0 · x + 0 · y + i,

0 ≤ i ≤ dmax

Computing stereo with constant disparities can be done with the regular graph-cuts [8]. Note,

however, that we always use a flexible pixel dissimilarity measure as described in Section2.1.

Step 2: The output of the graphcuts process is used to segment the image into connected com-

ponents of equal disparity. Our assumption is that each planar surface is represented by multiple

segments with constant disparities as demonstrated in Fig.2. Based on this assumption, we calcu-

late the affine motion parameters for each large enough segment. Let S be such a segment, then

the computed affine motion parametersms = (a, b, c) are those that minimize the error:

E(a, b, c) =
∑

(x,y)∈S

[I1(x, y) − I2(x + ax + by + c, y)]2. (8)

These motion parameters are computed directly from the image intensities using a gradient de-

scent algorithm in a multiresolution framework as suggested by [5]. With the method of [5], the

affine parameters can be computed in a sub-pixel accuracy. If a plane consists of several disparity

segments, it is sufficient that only one of the corresponding parametric motion computations will

converge, while the computations that do not converge are ignored. Having multiple descriptions

for the same plane is allowed. The task of segmenting the image into planar disparities according

to the planes list is left to the plane based graph-cuts described next.

2.2.2 Graph Cuts with Planar Labels (Step 3)

In this section we assume that a list of candidate planes is given, and we would like to represent

the disparity map between the two images with these candidate planes. An iterative graph cuts

approach is performed, where each pixel p = (x, y) can be assigned with a single corresponding
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(a) Input image (b) Constant Disparities (c) Planar Disparities

Figure 2: A regular graph cuts approach with constant disparities is used to obtain an initial over-segmentation of the

image disparities. It is assumed that each planar surface is represented by multiple segments with constant disparities.

This is demonstrated in (b). For each segment in (b) an parametric motion model is computed directly from the image

intensities (using the Lucas-Kanade method) and all planes where this computation converge are used as planar labels

in the planes-based graph-cuts. The result of the planes-based graph-cuts is shown in (c). This result is distinguishable

from the ground truth in only a few pixels.

plane denoted as mp = (a, b, c). Similar to the classical graph cuts approach we use the Potts

model as in Eq. (1),

E(f) =
∑
p∈L

Cp(fp(mp)) +
∑

p,q∈N

Vp,qδ(mp �= mq) (9)

where fp(mp) is the disparity of the pixel p according to the planar disparity fp(mp) = ax +

by + c. As a data penalty function Cp we use the flexible pixel dissimilarity measure introduced

in Section 2.1 (Eq. (5)). Note that the smoothness term penalizes transitions between different

planes, and not transitions between different disparities. This implies that a single planar label will

be the preferred representation of a single planar surface, as using multiple planes having similar

parameters will be penalized. As a result, the planar representation of the scene will tend to be

sparse even if the list of planes is redundant.

In addition to the labels representing planar surfaces, a special label, denoted as ’unknown’ is

used to represent pixels with unknown disparities. This label is assigned with a constant penalty.

Although stronger formulations exist for the specific case of occlusions (such as [20]), we use this

general purpose label to handle both occlusions, moving objects and deviations from the motion

model.
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The energy function defined above is very similar to the constant-disparities case, and can be

minimized in the same manner. The result of the energy minimization will be an assignment of a

planar surface to each pixel in the image. As noted before, the process of finding new candidate

planes (while removing unused planes) can be repeated, this time with the better segmentation

obtained by the plane-based graphcuts.

2.3 Forward Warping of Planes

A basic building block in the proposed scheme is the mapping of the inverse depths to the next

frames. Let the inverse depth map for frame I1 be described by planar surfaces, and let each pixel

in I1 be labeled as belonging to one of these planes.

The inverse depth of I2 can be estimated from that of I1 and from the horizontal translation Tx

between the two frames in the following way:

1. The parameters of each planar surface are translated from the coordinate system of the source

frame I1 to the coordinate system of the target frame I2. This is done as follows: Let

D1(x, y) =
f

Z
= ax + by + c

describe a planar (normalized) disparity in I1. Using Eq. 7, one can go back to the coeffi-

cients of the plane in the 3D space (up to a scale factor) giving: aX + bY + cZ
f
− 1 = 0.

Applying a horizontal translation Tx to get the representation of the plane in the coordinate

system of I2 yields: a(X − Tx) + bY + cZ
f
− 1 = 0, or

aX + bY + c
Z

f
− (aTx + 1) = 0.

Using Eq. 7 gives the normalized disparity in frame I2:

D2(x, y) =
a

a · Tx + 1
x +

b

a · Tx + 1
y +

c

a · Tx + 1
. (10)

The parameters of a planar disparity in I2 can therefore be computed simply from the corre-

sponding plane parameters in I1 and the relative horizontal translation Tx.

2. The pixel labeling of I2 can be computed by warping forward the pixel labeling of I1. When

two labels are mapped to the same pixel in I2, the label corresponding to a smaller depth is
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used to account for occlusion. Pixels in I2 that were not assigned with a label by the forward

warping are marked as “unknowns”, and are not used in further computations.

The forward warping of inverse depth may leave some pixels in I2 with no assigned label. This

is not an immediate problem to motion computation, as the depth of all pixels is not required for

motion analysis. At a later stage, the labels are completed from neighboring frames or interpolated

from other pixels.

2.4 Implementation and Efficiency

In general, stereo computation of each frame includes: (a) A single call to graph-cuts, us-

ing planes warped from the previous computation plus constant disparities. (b) A single call to

graph-cuts after removing unused planes and adding new planes using the parametric affine mo-

tion computation. Each call to graph-cuts involves two cycles of graph-cuts, each cycle consists of

a single expansion move for each label. We found that similar results were produced with only a

single cycle in the first call and two cycles in the second call. The second cycle is important mainly

to obtain a clean segmentation, which is not crucial in the first call.

For scenes having high depth variability, e.g. Street Sequence, fifty constant disparities were

used in the initialization step. For scenes with lower depth variability, e.g. Boat Sequence, twenty

constant disparities were enough.

Stereo computations using graph-cuts require most of the computational costs in the proposed

framework, and take ∼20 seconds per frame of size 360 by 240. In our experiments we used the
graph-cuts implementation of Kolmogorov (http://www.cs.cornell.edu/∼rdz/graphcuts.html), and
added to it the flexible dissimilarity measure and the planar labels. These additions did not have a

significant effect on the performance, since the number of candidate planes was practically smaller

than the number of constant disparity labels.

The stereo computations may be accelerated significantly using a multi-resolution framework.

In addition, our formulation of planar and flexible graph-cuts can be incorporated with other meth-

ods for solving Markov Random Fields. For example, in [11], a fast multi-resolution implemen-

tation of Belief-Propagation, which is an alternative approach for solving MRFs, was shown to

produce good results much more efficiently. [4] even introduced a real-time implementation of
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stereo matching using graphics hardware.

3 Computing Ego Motion (Assuming Known Depth)

Assume that the image Ik−1 has already been aligned and de-rotated according to the motion

parameters that were computed in previous steps. Let Ik be the new frame to be aligned. We are

also given the inverse depth map Dk−1 corresponding to (the de-rotated) Ik−1. Our motion model

includes a horizontal camera translation Tx and camera rotations R about the x and z axis:

P + �Tx = R−1P ′, (11)

where P and P ′ are corresponding 3D points in the coordinate systems of Ik−1 and Ik respec-

tively, and �Tx = [Tx, 0, 0]t denotes the horizontal translation. Note that the rotation matrix R is

applied only on frame Ik, as we assume that Ik−1 has already been aligned and de-rotated. On the

other hand, the translation is applied on Ik−1, since the depths are known only for frame Ik−1. A

schematic diagram of the ego-motion computation is shown in Fig. 3(a).

Assuming small rotations, the image displacements can be modeled as:

x′ = x + Tx · Dk−1(x, y) + cos(α)x′ − sin(α)y′

y′ = y + b + sin(α)x′ + cos(α)y′
(12)

The camera rotation about the z axis is denoted by α, and the tilt is denoted by a uniform ver-

tical translation b. in cases of a larger tilt, or when the focal length is small, the fully accurate

rectification can be used.

To extract the motion parameters, we use a slight modification of the Lucas-Kanade direct 2D

alignment [5], iteratively finding motion parameters which minimize the sum of square differences

using a first order Taylor approximation. The approximations cos(α) ≈ 1 and sin(α) ≈ α are also

used, giving the following error function to be minimized:

E(Tx, b, α) =
∑
x,y

{Ik−1(x − Tx · Dk−1(x, y), y)− Ik(x
′ − αy′, y′ + b + αx′)}2. (13)

We use the first order Taylor expansion around Ik−1(x, y) and around Ik(x
′, y′) to approximate:

Ik−1(x − Tx · Dk−1(x, y), y) ≈ Ik−1(x, y) − ∂Ik−1

∂x
TxDk−1(x, y) (14)

Ik(x
′ − αy′, y′ + b + αx′) ≈ Ik(x

′, y′) +
∂Ik

∂x′ (−αy′) +
∂Ik

∂y′ (b + αx′),
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which results in the following minimization:

E(Tx, b, α) =
∑
x,y

{Ik−1(x, y) − Ik(x
′, y′) − ∂Ik−1

∂x
TxDk−1(x, y) − ∂Ik

∂x′ (−αy′) − ∂Ik

∂y′ (b + αx′)}2(15)

The minimization can be solved efficiently by taking the derivatives of the error function E with

respect to each of the three motion parameters and setting them to zero, giving the following linear

set of equations with only three unknowns:

AT A

⎡
⎢⎢⎢⎢⎢⎣

Tx

α

b

⎤
⎥⎥⎥⎥⎥⎦ = cAT , (16)

where

A = [
∑
x,y

∂Ik−1

∂x
Dk−1(x, y),

∑
x,y

(
∂Ik

∂y′ x
′ − ∂Ik

∂x′ y
′),

∑
x,y

∂Ik

∂y′ ],

and

c =
∑
x,y

(Ik−1(x, y) − Ik(x
′, y′)).

Similar to [5], we handle large motions by using an iterative process and a multi-resolution frame-

work. In our case, however, we simultaneously warp both images, one towards the other: we warp

Ik−1 towards Ik according to the computed camera translation Tx (and the given inverse depth),

and we warp Ik towards Ik−1 according to the computed rotation α and the uniform vertical shift

b.

For additional robustness, we added outlier removal and temporal integration:

• Pixels having a large intensity difference are marked as outliers and are omitted from the

motion computation. Specifically, we omit pixels with

|∑W (Ik−1(x, y) − Ik(x
′, y′)) · ∂Ik−1

∂x
|∑

W
∂Ik−1

∂x

2 > s, (17)

whereW is a 5× 5 neighborhood, and s is a threshold (we used s = 1). Other schemes such

as re-weighted least squares can also be used [24]. Obviously, pixels that were marked by

the depth computation as having an unknown disparity are also not used.
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• Frames that were already aligned are averaged with earlier frames, also known as “Temporal
Integration”. Instead of computing motion using a single reference frame, we use the tempo-

ral integration that was shown in [18] to add stability and robustness to outliers in traditional

2D alignment methods.

Since the computed depth is quantized, a consistent depth pattern (e.g. the common case when

near objects are on the bottom of the image and far objects are on the top of the image) can cause

a small rotational bias, which accumulates in long sequences. A small modification of the motion

computation method described earlier can overcome this problem: Since the depth parallax is

horizontal, only vertical displacements are used to compute image rotation. To do so, we change

the error function in Eq. (13) to:

E(Tx, b, α) =
∑
x,y

{Ik−1(x − Tx · Dk−1(x, y), y)− Ik(x
′, y′ + b + αx′)}2. (18)

As in the original method, the iterative image warping is done using the accurate rotation matrix.

It should be noted that more general motion models can be computed, however our experience

showed that adding motion parameters that are not independent (e.g. pan with horizontal transla-

tion) may reduce the robustness of the motion computation for scenes with small depth variations.

Our current approach can even handle scenes that are entirely flat.

4 Interleaving Computation of Depth and Motion

The recovery of depth and motion is initialized by computing the inverse depth using the first

two frames. It is continued by interleaving stereo and motion computations, until the motion

of the camera and the corresponding inverse depths are computed for the entire sequence. The

initialization is described in Section 4.1 (and Fig. 5), and the interleaving process is described in

Section 4.2. A schematic work-flow of the interleaving process is shown in Fig.6.

As the process seems to depend on the selection of the initial frames, we tested this dependency

by randomly selecting 30 different starting points in a sequence of two thousand frames. In this

experiment all different starting points converged to very similar mosaic results.
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4.1 Initialization: First Two Frames

A 2D image translation (u, v) is initially computed using the traditional Lucas-Kanade method

[5], between I1 (the reference frame) and Ik, for k = 2, 3, . . .. This is performed until a frame Ik

having sufficient horizontal displacement from I1 is reached. Given (u, v), Ik is warped vertically

towards I1 according to v, and it is assumed that Tx = u. The vertical motion v is estimated

accurately since the parallax is mostly horizontal.

The graph cuts algorithm is applied on I1 and the warped Ik to estimate the depth map of I1

as described in Section 2. Despite the rotational component which has not yet been compensated,

a correct depth map for most of the pixels can be estimated by using the “Flexible Dissimilarity

Measure” (Section 2.1). The “unknown” label is automatically assigned to pixels with large verti-

cal displacements induced by the rotation. The pixels that get valid depth values can now be used

to obtain a better estimate for the relative camera motion between I1 and Ik (using the ego motion

computation described in Section 3).

After warping Ik towards I1 according to the estimated rotation matrix, the depth map of I1 is

re-computed. This iterative process is continued until convergence.

An example for the process is shown in Fig.4. In this example, two frames from a video

sequence were selected, and one of the frames was manually rotated by 2◦. The intermediate

depth maps that were obtained during the iterative process are shown, demonstrating the effective

convergence of the proposed method.

4.2 Interleaving Computation for the Entire Sequence

During the initialization process the inverse depth map D1 was computed, corresponding to

frame I1. The reference frame Ir is set to be I1, and its inverse depth mapDr is set to be D1.

With the inverse depth Dr the relative camera motion between the reference frame Ir and its

neighboring frame Ik can be computed as described in Section 3. Let (Tk, Rk) be the computed

camera pose for frame Ik compared to the reference frame Ir. Given (Tk, Rk) and the inverse depth

mapDr for image Ir, the inverse depth values ofDr can be mapped to the coordinate system of Ik

as described in Section 2.3, givingDk. A schematic diagram of the work-flow is shown in Fig.3.

Camera motion is computed as described above between Ir and its neighboring frames Ir+1, Ir+2,
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(a) Motion Computation (b) Depth Computation

Figure 3: Schematic diagrams of the motion and depth computations:

(a) Motion computation between frame Ik−1 with computed inverse depth Dk−1, and a new image Ik. (i) Initial

translation T̃ and R̃ are estimated (e.g. same as last frame, or zero). (ii) Ik−1 is warped with the estimated disparity,

equivalent to T̃ multiplied by Dk−1, to give the warped Ĩk−1. Ik is rotated by R̃−1 to give Ĩk. (iii) New estimations

for rotation R̃ and translation T̃ are computed between the warped images Ĩk−1 and Ĩk. (iv) The process is repeated

from step (ii) until convergence.

(b) Computation of inverse depth for a new reference frame Ik is performed between the previous reference frame Ir,

and Ĩk. Ĩk is the new frame Ik after it has been rotated to the coordinate of Ir by the rotation estimated in part (a).

The inverse depth Dk is the disparity computed between Ir and Ĩk divided by the translation T previously computed

between these two frames.

original frame 1st iteration 2nd iteration 3rd iteration

Figure 4: Intermediate depth maps computed during the iterative depth and motion computations process (unknowns

are marked in black). Tomake this examplemore interesting, we rotated the right frame by two degrees before applying

the algorithm. It can be seen that the columns at the left and right margins are marked as unknowns in the first iteration

due to their large vertical displacements. The support of the center pixels was sufficient to correctly extract the relative

motion between the two frames.
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•Compute motion (u,v) between I1 and I2
•Warp I2 towards I1 according to v

• Set the relative translation:  Tx = u

Estimate inverse depth D1
using graph cuts between 

I1 and the warped I2

•Estimate relative motion (T,R)  
between I1 and I2, given D1

•warp I2 towards I1 according to R

until the 
motion 

converges

Figure 5: A schematic work-flow of the initialization stage.

etc., until the maximal disparity between the reference frame Ir and the last frame being processed,

Ik, reaches a certain threshold. At this point the inverse depth map Dk has been computed by for-

ward warping of the inverse depth map Dr. Dk is updated using the iterative graph cuts approach

between Ik and Ir to get better accuracy. To encourage consistency between frames, small penal-

ties are added to all pixels that are not assigned with labels of their predicted planes. This last step

can be done by slightly changing the data term in Eq. (1).

Recall that for keeping the consistency between the different frames, the disparities computed

by the graph cuts method should be normalized by the horizontal translation computed between

the frames, giving absolute depth values (up to a global scale factor).

After updating Dk, the new reference frame Ir is set to be Ik, and its inverse depth map Dr is

set to be Dk. The relative pose and the inverse depth of the frames following Ir are computed in

the same manner, replacing the reference frame whenever the maximal disparity exceeds a given

threshold.

The process continues until the last frame of the sequence is reached. In a similar manner, the

initial frame can be set to be one of the middle frames, in which the interleaving process continues

in the both positive and negative time directions.

This scheme requires a computation of the inverse depths using the graph cuts method only for

a subset of the frames in the sequence. Besides the benefit of reducing the processing time, dispar-

ities are more accurate between frames having larger separation. While depth is computed only on
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Initialization*: estimate inverse 
depth map D1, k ←2, ref ←1

•estimate motion parameters (Tk,Rk) 
between Iref and Ik, given Dref

•Warp Ik towards Iref with rotation Rk

predict the inverse depth 
map Dk using Dref and the 
motion parameters (Tk,Rk)

re-estimate Dk using 
graph cuts between  
warped Ik and Iref ,

ref ←k, k ←k+1

max disparity from Iref
to Ik > Thresh ?

yesnok ←k+1

Figure 6: A schematic work-flow of the interleaving process.

a subset of frames, all the original frames are used for stitching seamless panoramic images.

4.3 Panoramic Rectification

In real scenarios, the motion of the camera may not perfectly satisfy our assumptions. Some

small calibration problems, such as lens distortion, can be treated as small deviations from the

motion model and can be overcome using the robust tools (such as the ”unknown” label or the

”flexible” graph cuts approach presented in Section 2.1).

However, a bigger challenge is introduced by the camera’s initial orientation: if the camera is

not horizontally leveled in the first frame, the motion computations may consist of a false global

camera rotation. The deviation of the computed motion from the actual motion may hardly be

noticed for a small number of frames (making traditional calibration much harder). But since

the effect of a global camera rotation is consistent for the entire sequence, the error accumulates,

causing visual artifacts in the resulting panoramas.

This problem can be avoided using a better setup or by pre-calibrating the camera. But very

accurate calibration is not simple, and in any case our work uses videos taken by uncalibrated

cameras, as shown in all the examples.

A possible rotation of the first image can be addressed based on the analysis of the accumu-

lated motion. A small initial rotation is equivalent to a small vertical translation component. The
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effect for a long sequence will be a large vertical displacement. The rectification of the images

will be based on this effect: After computing image translations (ui, vi) between all the con-

secutive frames in the sequence, the camera rotation α of the first frame can be estimated as

α = arctan(
∑

i vi/
∑

i ui). A median can be used instead of summation in the computation of

α if a better robustness is needed. All the frames are de-rotated around the z axis according to α.

5 Minimal Aspect Distortion (MAD) Panorama

The visualization process can start once the camera ego-motion and the dense depth of the scene

have been computed. Motion and depth computation can be done as proposed in the previous

sections, or can be given by other processes. We propose two approaches for visualizing long

scenes. In Section 6 the existing X-Slits approach is used for rendering selected viewpoints. In

this section a new method is presented for generation of a long minimal aspect distortion (MAD)

panorama of the scene. This panorama should satisfy the following properties: (i) The aspect

distortions should be minimal. (ii) The resulting mosaic should be seamless.

Since the visualization stage comes after motion computation, the images in this section are

assumed to be de-rotated and vertically aligned. The residual displacements between the images

are therefore purely horizontal. It is also assumed that the depth maps are dense. The depth values

for pixels that were labeled as unknowns are interpolated from other frames (see Section 2.3).

When pixels are occluded in all neighboring frames, they are interpolated from neighboring pixels

according to the planar surface models.

5.1 Panorama as a Cut in the Space-Time Volume

A panoramic image is determined by a cut C(t) through the space-time volume, as seen in

Fig. 7. For each image t, C(t) determines the left column of a strip St in image t to be stitched

into the panorama.

To obtain a seamless stitching, the right border of the strip St is a curved line, corresponding to

the left side of the next strip, i.e. C(t+1) (as shown in Fig. 8). This curved line is computed using

the camera motion and the known inverse depth. The image strip St is warped to a rectangular strip

S ′
t before being pasted into the panorama. The warping is done by scaling each row independently,
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C(2)C(1) C(11)
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width(1)

width(12)

(a) (b)

Figure 7: (a) A general cutC(t) through the space-time volume. (b) The same cut in the spatially aligned space-time

volume. C(t) designates the leftmost column of the strip St taken from frame t.

It It+1

mosaic

AA’

C(t) C(t+1)

St

S’t

St+1

S’t+1

Figure 8: The panorama is stitched from a collection of rectangular strips S′
t warped from the input frames St. The

stitching is seamless because each point A′ on the right border of the image strip St corresponds to the point A on the

left border St+1 according to its the computed disparity. A and A′ are the same point in the mosaic’s coordinates.

from its width in St to the width of S ′
t given by:

width(S ′
t) = C(t + 1) − C(t) + alignmentt+1(C(t + 1)), (19)

where alignmentt+1(x) is set to be the average disparity of the pixels in column x of image t + 1

relative to image t. This average disparity equals to the average inverse depth at this column

multiplied by the relative horizontal translation Tx. In the warping from St to S ′
t far away objects

are widened and closer objects are becoming narrower.

In pushbroom and X-Slits projections (See Fig. 13), C(t) is a linear function of the camera

translation. The local derivative of a general cut C(t) can represent a local X-Slits slice having a
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slope of:

slope(t) = dC(t)/dt, (20)

as demonstrated in Fig. 9. The local X-Slits slope can change spatially throughout the panorama.

Special slopes are the pushbroom projection (slope(t) = 0) and the perspective projection (slope(t) →
∞).

In [31] a minimum distortion mosaic is created such that the slope function is piecewise con-

stant, and a non-linear optimization is used to minimize this distortion. In MAD mosaicing the

cut C(t) is allowed to be a general function, and simple dynamic programming is used to find the

global optimum.

5.2 Defining the Cost of a Cut

The optimal cut through the space-time volume that creates the MAD mosaic is the cut that

minimizes a combination of both a distortion cost and a stitching cost. The cost of a cut C(t) is

defined as follows:

cost(C) =
∑

t

distortiont(Ct, Ct+1) + α
∑

t

stitchingt(Ct, Ct+1), (21)

where t is a frame number and α is a weight. The distortion term estimates the aspect distortion

in each strip, and the stitching term measures the stitching quality at the boundaries. Both are

described next.

Distortion cost: As described before, a cut C determines a set of strips {St}. We define the
distortion cost distortiont(C(t), C(t + 1)) to be the variance of disparities of the pixels in strip

St. This is a good measurement for distortion, as strips with high variance of disparities have

many dominant depths. Objects in different depths have different motion parallax, resulting in a

distorted mosaic. In that case, we prefer such strips to be wider, giving a projection that is closer

to perspective, as shown in Fig. 10. A single wide strip in a high variance region will be given a

lower cost than multiple narrow strips.

We have also experimented with a few different distortion functions: spatial deviation of pixels

relative to the original perspective; aspect-ratio distortions of objects in the strip ([31]), etc. While

the results in all cases were very similar, depth variance in a strip (as used in our examples) was
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preferred as it consistently gave the best results, and due to its simplicity.

Stitching cost: The stitching cost measures the smoothness of the transition between consec-

utive strips in the panoramic image, and encourages seamless mosaics. We selected a widely used

stitching cost (similar to the one used in [3]), but unlike the common case, we also take the scene

depth into consideration when computing the stitching cost. This stitching cost is defined as the

sum of square differences between the C(t + 1) column of image t + 1 and the corresponding

column predicted from image t. To compute this predicted column an extra column is added to S ′
t,

by generating a new strip of width width(S ′
t)+1 using the method above. The right column of the

new strip will be the predicted column.

In addition to the distortion and stitching costs, strips having regions that go spatially back-

wards are prohibited. This is done by assigning an infinite cost to strips for which C(t + 1) <

C(t) + Dmin(C(t + 1)), where Dmin(C(t + 1)) is the minimal disparity in the column C(t + 1)

of image t + 1. For efficiency reasons, we also limit C(t + 1)−C(t) to be smaller than 1/5 of the

image’s width.

The distortion cost and the minimal and average disparities are computed only from image

regions having large gradients. Image regions with small gradients (e.g. a blue sky) should not

influence this cost as distortions are imperceptible at that regions, and their depth values are not

reliable.

5.2.1 Graph Construction and Minimal Cut

The graph used for computing the optimal cut is constructed from nodes representing image

columns. We set a directed edge from each column x1 in frame t to each column x2 in frame

t + 1 having the weight

Vt(x1, x2) = distortiont(x1, x2) + α · stitchingt(x1, x2).

Each cut C corresponds to a path in the graph, passing through the columnC(t) at frame t. The

sum of weights along this path is given by
∑

t Vt(C(t), C(t + 1)), and is equal to the cost defined

in Eq. 21.
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Figure 9: (a) A path C in the graph. C(t) indicates the node selected in time t. Locally C(t) is a X-Slits projection

as shown by the dotted line, with slope = cot(θ). (b) Graph Construction: the nodes are all the columns in theX − T

space. There are edges from each column of image t to all the columns of image t + 1.

 

 

0

0.1

0.2

0.3

0.4

0.5

Figure 10: Disparity variance at columns in the non-aligned x − t volume corresponding to Fig. 12. Each row

represents an input image, and the value at location (x, t) represents the variance of normalized disparity at column x

of image t. The distortion cost is the variance of each strip, and here we show the variance of each column. It can be

observed that the selected cut has a large slope when it passes through problematic areas that have high variance. A

large slop is equivalent to wide strips, giving a result that is close to the original perspective.
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Finding the optimal cut that minimizes the cost in Eq. 21 is therefore equivalent to finding

the shortest-path from the first frame to the last frame in the constructed graph. Any shortest-

path algorithm can be used for that purpose. We implemented the simple Bellman-Ford dynamic

programming algorithm with online graph construction.

Fig. 11 compares MAD mosaics with pushbroom mosaics on two regions taken from a long

panorama. The differences between the two mosaics are large because the camera is very close to

the scene, and depth differences inside the scene are very large compared to the distance between

the camera and the scene.

5.2.2 Implementation and Efficiency

The time complexity of the stitching process is dominated by the computation of the stitching

cost. By definition the stitching cost has a complexity of w2 · h operations per frame. The

computation of the distortion cost is relatively negligible as it has a complexity of w2 operations

per frame. We do not have to actually calculate the variance for each strip, because we can pre-

calculate the first two moments of each column, and use them to estimate the variance of every

strip. The computation time for the dynamic programming is negligible as well.

Online graph construction enables us to run on any number of frames with a low memory

constraint: the frames are loaded and processed sequentially and the graph-solving advances one

frame at a time. The memory used in our implementation is of size w · N , where w is the image

width, h is the image height, and N is the number of frames.

Our non-optimizedMatlab implementation has a processing time of 2.4 seconds per frame with

the stitching cost (not including loading the images). The processing time without the stitching cost

is 0.2 seconds per frame. The processing was performed on 360 × 240 images with a 3Ghz CPU.

6 Dynamic Image Based Rendering with X-Slits

MADmosaicing generates a single panoramic imagewith minimal distortions. AMADpanorama

has multiple viewpoints, and it can not be used to create a set of views having a 3D effect. Such

3D effects can be generated by X-Slits mosaicing.

New perspective views can be rendered using image based rendering (IBR) methods when the

27



(a)

(b)

(c)

(d)

Figure 11: Pictures (a, c) are segments from a long pushbroom mosaic, while (b, d) show the same area in a long

MAD mosaic. Substantial widening of far away objects and narrowing of close objects in evident in pushbroom.

While width of strips is uniform in pushbroom, strip boundaries are marked on top of the MAD Mosaic image. Note

also that the MAD mosaic avoids cutting inside moving objects.
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(a)

(b)

(c)

Figure 12: (a) A MAD mosaic of a street in Jerusalem. The small marks on the top are the strip boundaries. It can

be noticed that large vertical objects that cannot be sampled correctly (e.g. moving people or objects that are too close

and have bad depth values) are preserved in a single wide strip due to the stitching cost. A top view of the space-time

volume of this sequence is shown in Fig. 10. (b) A graph showing C(t), the left strip boundary for each frame. The

width of the graph is scaled to the mosaic’s coordinates, and an identical value is shown for all columns corresponding

to the same strip. Each location in the graph therefore corresponds to the strip in (a) above it. Lower values of C(t)

represent a strip from the left side of the input image (and a view to the left). Higher values of C(t) represent a strip

from the right side, and a view to the right. (c) The constructed depth map of the mosaic.
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multiple input images are located densely on a plane [22, 12]. In our case the camera motion is

only 1D and there is only horizontal parallax, so perspective images can not be reconstructed by

IBR. An alternative representation that can simulate new 3D views in the case of a 1D camera

translation is the X-Slits representation [37]. With this representation, the slicing function C(t) is

a linear functions of the horizontal translation (See Fig 13).

Constant slicing functions (C(t) = const), as in Fig. 13.b, correspond to pushbroom views

from infinity. More general linear functions,

C(t) = a · Ux + b

where Ux is the accumulated horizontal camera translation, correspond to finite viewing positions.

The geometrical interpretation of these slices appears in [37]. It was shown in [10] that synthesized

views obtained using the X-Slits projection are the closest to a perspective projection under the

constraint of using linear slices.

As the linear slicing functions of the X-Slits are more constrained than those used in MADmo-

saicing, they can not avoid distortions as inMADmosaicing. On the other hand, X-Slits projections

are more powerful to create a desired viewpoint. For example, in MAD-mosaicing distortions are

reduced by scaling each strip according to the average disparity, while in the X-slits representation

image strips are not scaled according to disparity. This is critical for preserving the geometrical in-

terpretation of X-Slits, and for the consistency between different views, but it comes at the expense

of increasing the aspect distortions.

6.1 Seamless Stitching for X-Slits

Since a video sequence is not dense in time, interpolation should be used to obtain continuous

mosaic images. When the displacement of the camera between adjacent frames is small, reason-

able results can be obtained using some blurring of the space-time volume [22, 12]. For larger

displacements between frames, a depth-dependent interpolation must be used. The effects of using

depth information for stitching is shown in Fig. 14. Fig. 14.a shows results without using the dense

depth. While the restaurant (whose depth is close to the dominant depth in the scene) is stitched

well, closer objects (rails) are truncated and faraway objects are duplicated. In contrast, stitching
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Figure 13: New views are generated as linear slices in the horizontal translation C(t) = a ·Ux + b, where Ux is the

accumulated horizontal camera translation. (a) Changing the slope of the slice simulates a forward-backward camera

motion, while shifting the slice simulates a sideways camera motion. (b) The special case of parallel slices in the

space-time volume (C(t) = const) results in different viewing directions of oblique pushbroom images.

according to the dense depth map (Fig. 14.b) gives a far better stitching result. Note that very

narrow objects are still a challenge to our method and may not be stitched well (Such as the narrow

pole on the right side of the restaurant). This problem is usually avoided in the MAD mosaicing,

which tends to keep such narrow objects in a single strip.

We used two different rendering approaches of X-Slit images. An accurate stitching using

the dense depth maps, and a faster implementation suitable for interactive viewing. The accurate

stitching is similar to the one described in section 5.1, with the only difference that the image

strips are not scaled according to the average disparity. To get real-time performance suitable

for interactive viewing each row cannot be scaled independently. Instead, the following steps

can be used in real-time X-Slits rendering: (i) Use a pre-process to create a denser sequence by

interpolating new frames between the original frames of the input sequence. This can be done

given the camera motion between the frames, and their corresponding inverse depth maps. (ii)

From the denser sequence, continuous views can be obtained by scaling uniformly each vertical

strip pasted into the synthesized view, without scaling each row separately. The uniform scaling of

each strip is inversely proportional to the average disparity in the strip.
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(a) (b)

Figure 14: The benefit of stitching using dense depth. (a) A street view (X-slits) obtained by stitching without depth

scaling. The restaurant (whose depth is close to the dominant depth in the scene) is stitched well, but closer and farther

objects are truncated or duplicated. (b) Depth-based stitching eliminates duplications and truncations. Note that very

narrow objects may still pose a problem for our method (Such as the narrow pole on the right side of the restaurant).

7 Experimental Results

All experiments discussed in this paper were performed on videos without camera calibration

other than the removal of lens distortion. The only manual involvement was the setting of the

maximal allowed disparity, which was done only to speed up performance.

The data and the full panoramas are available online at http://www.vision.huji.ac.il/mad. The

examples demonstrate the applicability of our method to a variety of scenarios, including a se-

quence captured from a river boat (Fig. 15-16), a helicopter (Fig. 17) and a driving car in a long

street (Figs. 11,12,18). The long MAD panorama of the entire street can be seen online. We

constructed panoramic images using X-Slits (Fig. 15,17) as well as sample images from a virtual

walk-through (Fig. 16 and 18). In Figs. 11-12 MAD mosaicing was used to reduce distortions.

To successfully process all these different scenarios, the method had to handle different types

of camera motions (e.g. highly unstable camera in the helicopter sequence), and different kinds

of scenes (such as the street sequence, where the depths varies drastically between the front of the

buildings and the gaps between them).

MAD mosaicing was proven to work particularly well on long and sparse sequences, as shown

in Figs. 11-12. Some objects have such a large disparity that the stereo computation could not
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register them well, e.g. the close traffic signs that have a disparity greater than 50 pixels. In such

cases the stitching cost is responsible for rendering these objects using a wide strip from a single

frame. As shown in Fig. 12, moving people and some of the very close traffic signs were rendered

correctly in most cases. The long MAD panorama of the entire street is available online.

The total computational time ranges from 10-30 seconds for each frame of size 360x240, de-

pending on the motion between frames and the depth variation. The stereo computations, which

are the most time consuming part, take approximately 20 seconds per frame. In a dense video

sequence, stereo computations run only once in a few frames. The ego-motion computations and

the stitching of MAD mosaics take approximately 5 and 2.5 seconds per frame respectively in an

unoptimized Matlab implementation.

More details about each sequence are described next:

Boat: The input sequence used to produce the panoramic boat image in Fig. 15 consists of 450

frames. The camera is relatively far from the scene, and therefore the variance of the depth was

small relative to other sequences (such as the street sequence). This allowed us to limit the maximal

disparity to 20 pixels, and reduce the run-time which is approximately linear in the number of

labels. In addition, the iterative graph-cuts was applied on this sequence only once in 5 frames on

average (The graph cuts method is performed only when the maximal disparity reaches a certain

threshold, as described in Section 4).

Street: The length of the street as shown online and in Figs. 11-12 is about 0.5Km, and the

sequence consists of 1800 frames. This sequence is very challenging, as it is sparsely sampled: The

average disparity between pairs of frames is about 20 pixels, and the depth variations are also very

large. Most stitching problems in this sequence are due to very close objects having a disparity

larger than our pre-determined limit of 50 pixels. In this sequence, the iterative graph-cuts was

called almost for each frame.

Shinkansen: The input sequence used to produce the panoramic image in Fig. 17 consists of

333 frames. The derailed Shinkansen train is not moving. Some intermediate depth maps and the

motion parameters are also shown. A panoramic image of the same scene consisting of 830 frames

appears in the homepage.
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Figure 15: The panoramic image was constructed by X-Slits mosaicing from a sequence captured from a river boat.

The corresponding panoramic inverse depth map is also shown.

Figure 16: New synthetic views can be generated from the original boat sequence using X-Slits, resulting in a new

sequence where the camera travels inside or outside the street, and it can even see behind the trees. Few frames from

such a sequence are shown, and the full video is available at http://www.vision.huji.ac.il/mad.

8 Discussion: What Makes This Work

Our goal was to build a system that will enable the robust creation of urban and terrain models

from cameras mounted on vehicles or aircraft scanning an urban scene or a terrain. The system

should work for a reasonably captured video, even in cases that other methods fail. We believe that

this goal has been achieved, and in this section we discuss the elements that contributed to that.

The most important decision was to restrict the motion model. A one dimensional translation

(say horizontal), and rotations about the x and z axis, is the most appropriate motion model for

a camera scanning a scene from a moving vehicle. While this restriction keeps most classes of

videos applicable, it adds significantly to the robustness of the system. All three components of

the motion are orthogonal, so no component can compensate for the other. Motion analysis works
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Figure 17: A panoramic view of a derailed Shinkansen train, with its corresponding inverse depth and motion

parameters (Tx and accumulated tilt and image rotations). Inverse depth maps are also shown for a few frames

(unknowns are marked in black).
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(a) (b) (c) (d)

Figure 18: A simulation of a forward motion from the original sequence moving sideways. (a) and (c) are synthe-

sized to appear from a distance similar to the camera location, while (b) and (d) are synthesized from closer into the

scene. Synthesis is done using X-Slits (slicing the space time volume). Objects marked by arrows were occluded in

(a) and (c), and the changes in occlusions give a strong feeling of a walk-through.

perfectly well even in cases considered degenerate for more general motion models (e.g. a flat

scene having a uniform depth).

The direct Lucas-Kanade motion computation using image intensities, avoiding feature detec-

tion, succeeds even when features are ambiguous or hard to detect. The sideways motion may also

pose a problem for some feature based methods that need to track all features in all frames. In

sideways motion feature points exist in a very small number of frames relative to other types of

motion.

The depth computation of our system uses a graph cuts method to find planar surfaces in the

scene. While we believe that other methods can replace the graph cuts method, the detection of

scene surfaces rather than computing a single depth for each pixel enables better prediction of

the depth of new frames from the depths computed in earlier frames. Another important element

in the depth computation is the “flexible” modeling of correspondences between images. Rather

than assuming purely horizontal displacements, we allow slight vertical displacements as well.

This allows convergence even from a wrong initial motion model, and even under some camera

distortions.

Temporal integration, that helped robustness in traditional 2D Lucas-Kanade [17, 28], was used

as well. The computation of motion between the new frame and a temporal average of some recent
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frames is equivalent to simultaneous alignment of the current frame and all previous frames, which

can overcome noise and corrupted frames.

While all the above elements contributed substantially to the robustness and success of the

computation of camera motion, depth computation can never be perfect for all points at all loca-

tions. Ambiguity and occlusions always occur, in which case depth is impossible to compute. If

no user interaction is used for correcting the scene depth, the available computed depth would not

be sufficient for model-based rendering. Here comes the decision to use image-based rendering

methods for creating panoramic images and for a virtual walkthrough.

The natural human motion is on the ground plane: left, right, forward, and backwards. All

these motions are on a plane that includes the camera path, and they all can be simulated using

X-Slits with no need for an accurate scene depth. We found that when rendering a narrow field

of view, or when the scene is relatively flat, the distortion of the X-Slits projection compared to

perspective projection is barely noticeable. These distortions become more visible when the depth

in the scene is large compared to the distance from the camera, and when the field of view becomes

wider.

When only a single panoramic image of the long scene is needed, without creating multiple

views, MAD mosaicing creates an undistorted panoramic image. A pleasant side effect of MAD

mosaicing is avoiding the truncation of objects where the depth computations fails (such as walking

people that are always present when imaging city streets).
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