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Abstract

We presenspectral mattinga new approach to natural
image matting that automatically computes a set of funda-
mental fuzzymatting componentfom the smallest eigen-
vectors of a suitably de ned Laplacian matrix. Thus, our
approach extends spectral segmentation techniques, whos
goal is to extract hard segments, to the extraction of soft
matting components. These components may then be use
as bhuilding blocks to easily construct semantically mean-
ingful foreground mattes, either in an unsupervised fashio
or based on a small amount of user input.
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(d) Matting components computed by our method.
Figure 1. Spectral segmentation and spectral matting

1. Introduction

Digital matting is the process of extracting a foreground
object from an image along with an opacity estimate for
each pixel covered by the object. This operation enables  This concept is illustrated in Figure 1. Given the input
compositing the extracted object over a novel background,image in Figure 1a, one can produce an unsupervised dis-
and thus constitutes an invaluable tool in image editing, joint hard partitioning of the image using, e.g., [18] (Figu
video production, and special effects in motion pictures.  1b). In contrast, we compute a set of overlapping, frac-

In particular, the challenging casemdturalimage mat-  tional, matting components, visualized in Figure 1d. Com-
ting, which poses no restrictions on the background, hasbining three of these components (framed in red) yields the
received much research attention. Recognizing that theforeground matte of the girl, shown in Figure 1c.
problem is inherently under-constrained, all of the exist- |, summary, our main contribution is the introduction of
ing methods require the user to provide additional con- yhe concept of fundamental matting components and the re-

straints in the form of a trimap [2, 14, 4] or a set of brush gyjting rst unsupervised matting algorithm. Of coursestju
strokes [16, 7, 5]. Thus, the question of whether (or to what jike unsupervised segmentation, unsupervised matting is a

degree) is it possible to automate the matting process, is ofj|_nosed problem. Thus, we also describe two extensions
considerable theoretical and practical interest. that use these fundamental matting components to construct
In this paper we attempt to provide some new insights g particular matte: (i) present the user with several mgttin

into this question. Our work is strongly in uenced by spec- jternatives to choose from; or (ii) let the user specify her
tral segmentation methods [12, 17, 10, 18]. These meth-jntent by just a few mouse clicks.

ods perform unsupervised image segmentation by examin-
ing the smallest eigenvectors of the image's graph Laptacia .
matrix. This work, for the rst time, extends this idea from 2- Matting components

producing hard segments to soffitting components Matting algorithms typically assume that each pibkxéh

Spectral segmentation methods, such as [12], resort togn input image is a linear combination of a foreground color
computation of real-valued eigenvectors as an approxima-g, and a background colds;:

tion necessary to transform an NP-complete optimization

problem into a tractable one. In contrast, we are not seeking li=aFR+(1 a)B: Q)

a disjoint image partitioning, but rather attempt to recove

the fractional foreground coverage at each pixel. Specif- This is known as theompositing equatiarin this work we
ically, we obtain our real-valued matting components via generalize the compositing equation by assuming that each
a linear transformation of the smallest eigenvectors of the pixel is a convex combination & image layers?;:::;F¥:
matting Laplacianmatrix, introduced by Leviret al. [7]. K

Once obtained, these matting components serve as building | = é, aikl:lk: )

blocks for construction of complete foreground mattes. 1



TheK vectorsak are thematting componenisf the image, ~ whereCX are disjoint subsets of pixels. In this case the indi-

which Specify the fractional contribution of each layertie t cator Vectorgncl; i rnCK are all independent, orthogonaj
nal color observed at each pixel. The matting components eigenvectors of. with eigenvalue 0. However, computing
are non-negative and sum to 1 at every pixel. The intuitive the eigenvectors df yields these indicator vectors only up

motivation for having these components is that similarly to rotation. This is the case since for aky K rotation
to the individual low-level fragments in an over-segmented \o+rix R the vectors{mcl .....

image they may be used to construct higher level, seman-

. . . nullspace otL.
E(i:;::?/erileanmgful foreground maties, as demonsirated in In real images, the af nity matriXA is rarely able to per-

. . fectl he diff ixel cl . &h
A desirable, although not required, property of the mat- ectly separate between the different pixel clusters. &her

i S it h t should be ei fore, the Laplaciath. usually does not have multiple eigen-
Ing components 1sparsity €ach component should b€ 1= yactors with zero eigenvalue. However, it has been ob-

ther cqmpletely olpaque or qt?lmpl_tla_'[r]gly transpatrher;t OVEr 8Sqaryed that the smallest eigenvectords @énd to be nearly
[nany_t]maget PIXe sﬂ?s dpfc;s& tel. IS melan_st d? arlgas Otonstant within coherent image components. Extracting
ransition between the diiierent layers are imited to alsma -y gifferent components from the smallest eigenvectors is

numger o]flpixels, and each pixel is in uenced by a small known asspectral roundingand has attracted much atten-
number ot layers. . . tion [10, 18, 15, 19, 6]. The simplest approach [10] is to
In. this paper, we explore the_ relationship between the cluster the image pixels using tlkemeans algorithm, and
matltlng components and .the“elgenvehctorshof thz Matting se perturbation analysis to bound the error of this algo-
Laplacian matrix [7]. Speci cally, we show that under Cer- s, a5 4 function of the connectivity within and between
tain assumptions the matting components are spanned Dy ,qrers. Other more recent methods [18, 19], which in-
the smallest eigenvectors of the matting ITapIaC|an. We thenspired the approach taken in this work, explicitly search
propose a method for computing the matting components byg, 5 rotation matrix that brings the eigenvectors as close

nding an appropriate linear transformation and applying i 5 possible to binary indicator vectors
to these eigenvectors. '

3.1. Spectral Analysis with the Matting Laplacian

3. Spectral Analysis Our goal in this work is to derive an analogy between
We start by brie y reviewing the basic theory of spec- hard segmentation and matting and to show that fuzzy mat-

tral segmentation methods [12, 17, 10, 18]. These methodding components may be extracted from the smallest eigen-

typically associate with the image ah N af nity ma- vectors of the matting Laplacian, similarly to the extranti

trix A, such asA(i;j) = e dij=s?. whered;; is some mea- of hard clusters described earlier.

sure of the distance between the pixels (such as color dif- The matting Laplacian was introduced by Leeiral.[7]
ference and geometric distance). One can then de ne thein order to evaluate the quality of a matte without explicitl
Laplacian matrix. = D A, whereD is the diagonal ma-  €stimating the fqreground and background colors in eq. (1).
trix D(i;i) = & A(i; j). L is a symmetric positive semide - They show that if the colors of the background and the fore-

nite matrix, whose eigenvectors capture much of the imageground within a local image window form two different
structurel lines in RGB space, then ttee values withinw may be ex-
Consider the ideal case where the af nity matéixcap- pressed as a linear combination of the color channels:
tures exactly the fact that an image is composed from sev- .
eral distinctyclusters, omonnectedgcompone%té'hat is, a 82w ai= aIf+ %1+ %P + b ®)
subsefC of the image pixels is a connected component of
the image ifA(i; j) = O for everyi; j such thai 2 C, j 2C,
and there is no subset Gfwhich satis es this property. Let
mC denote the indicator vector of the compon€nt

c  1i2C Jaiab)=§ & a afIf a§I° afI® by 2y ekagk?
rni - 0 |2C Il q2|i2Wq
(4)
where ekagk? is a regularization term oa. The linear

model coef cientsa;b may be eliminated from equation (4),
yielding aquadratic cost ira along

Thus, the matte extraction problem becomes one of nding
the alpha matte that minimizes the deviation from the linear
model (3) over all image windows:

thennC is an eigenvector df with eigenvalue 0.
Now suppose that the image consistskofcannected
componentsCY;:::;CK such thatf1;:::;Ng = ~K,Ck

— AT 5-
1in fact, most spectral segmentation papers consider norrdalfzsty ‘](a) =a'la: (5)

matrices such a® 1L orD LD 172, However, in this work we focus is th . laci . .
onL itself as it is not clear how to justify the normalization iretbase of HerelL is thematting Laplaciana sparse symmetric posi-
the matting Laplacian. The problem is that the off-diagoterents of the ~ tive semide niteN N matrix whose entries are a function

matting Laplacian can be both negative and positive, andttreimatting of the input image in local windows, depending neither on
cost cannot be expressed as a sum of positive pairwise terms. the unknown foreground and background colors, nor on the



linear model coef cientsL(i; j) is de ned as:

3 L T e 1
QI(i:Ja)qu di Wi (i ) (Sq Wi 3) (I my)
(6)

Hered; is the Kronecker deltayy is the 3 1 mean color
vector in the windowwy around pixelg, Sqis a 3 3 co-
variance matrix in the same windojwgj is the number of
pixels in the window, ands is the 3 3 identity matrix.

The cost (5) has a trivial minimum which is a constant

a vector, and thus in the user assisted framework describe
in [7], J(a) is minimized subject to user constraints. Levin
et al. observe that the smallest eigenvectors of the matting,[hiS for each of the three window types
Laplacian (6) capture information about the fuzzy cluster Case 1 Since the matting components.sum to one at every
assignments of pixels in the image, even before any user'image pixel, the single active componett must equal 1
speci ed constraints are taken into account. However, theywithin w. Thus, it is easily expressed as a linear function of
make no use of the eigenvectors beyond presenting therr}he image by settingR= a® = a8 = 0 andb= 1
to the user as guides for scribble placement. In this work, Case 2 This case is equivalent to theorem 2 iﬁ 7]

Vrﬁitfirr:;v‘égr]r?;t);geer?tr:zlflfﬁé ?rlrg];aeg(\e/ectors span the individualc, g 5 SinceF*1; F*2; F's are constant withimv and their
To gain some understanding We begin by studying the colors are Ilneir_ly mdependenkt,_ there e>a§taG;aBk {-de
ideal case. To justify the usagé of spectral analysis to es-b such thate; F2i + b= 1,Pe;F%i + b= 0 andhe; - o
timate mat.tin components, our goal is to show that underb: 0. Asl = alaF+ a'eFte+ al9F s we get thatey i +
g comp » ourg : b= a%, so thatak is a linear function of the image. A
reasonable conditions, the actual matting components be-

. ko ks
long to the nullspace of the matting Laplacian. We say that S'mA"Sari:rt?]gnlzgghgi?;xarjn&a Ia.ciDans when the small-
amatting componerat is activein a local image window b ’

if there exists a pixeil2 w for whicha/ > 0. The following est eigenvectors of fche matting'LapIacian are qomputed, the
claim states the conditions on the local color distribufion r_esult may be any linear comblnatlon Of. t_he different mat-
each layer, under whichak = 0, The severity of the con- ting components, and recovering the |nd|V|d_uaI components
ditions is related to the number of active layers in a local Is equivalent 1o Imearly'transformlng the eigenvectors. !
window. The least restricted case is when only one layer isShOUIOI be noted thgt uniike hard segments, the matting com-
active, in which the local color distribution can be arhiyra ponents are not binary vectors ar_1d thus are not necessar-
complex. The most restricted case is when a window con—IIy orthogonal. Hence, while the eigenvectors are'orthogo—
tains three active layers (as in the case of a T-junctiorg, an nal, the transformation from eigenvectors to matting com-

for such windows the color of each layer must be locally PON€Nts might be a general linear transformation and not a
uniform simple rotation.

To summarize, the main conclusion of the above discus-
Claim 1 Letal;:::;a¥ be the actual decomposition of the sion is that whenever the matting components of an image

Figure 2. The smallest eigenvectors of the matting Laplacian for
the image in gure 1a. Linear combinations of these eigenvectors
(Produced the matting components shown in gure 1d.

that: ak = aRIR+ a®1C+ aBIB+ b, 8i 2 w. Below we show

image | into k matting components. The vectats:::;aX satisfy the conditions of claim 1, they may be expressed as
lie in the nullspace of the matting Laplacian L (given by a linear combination of the zero eigenvectord.of
eq. 6 withe = 0) if every local image window w satis es In most real images, the assumptions of claim 1 don't
one of the following conditions: hold exactly, and thus the matting Laplacian might not have
. K . . multiple eigenvectors whose eigenvalue is 0. Yet if the lay-
1. Asingle componert* is active within w. ers are suf ciently distinct, they are generally capturgd b

the smallest eigenvectorsof For example, Figure 2 shows
the smallest eigenvectors for a real image, all exhibitive t
fuzzy layer boundaries. We have empirically observed that
the matting components of real images are usually spanned
3. Three componentak; ak2; a*s are active within w, quite well by the smallest eigenvectors of the matting Lapla
each layer F1; F*2; Fks has a constant color withinw,  cian. Indeed, the components shown in Figure 1d were ob-
and the three colors are linearly independent. tained as linear combinations of the smallest eigenvectors

2. Two componenta¥:; ak2 are active within w and the
colors of the corresponding layersFF*2 within w
lie on two different lines in RGB space.

Proof: The matting cost (5) measures the deviation between3.2. From Eigenvectors to Matting Components

a matte and a linear function of the color channels, over As explained above, recovering the matting components
all local windows (eq. 4). Thus, in order to show that a of the image is equivalent to nding a linear transforma-
matte componena® satis esLa* = 0 it suf ces to show tion of the eigenvectors. Recall that the matting compaent
that for every local windowy, there exisgR; a®; a;b such should sumto 1 at each image pixel, and they should be near



0 or 1 for most image pixels, since the majority of image For example, the matte in gure 1c was obtained by adding
pixels are usually opaque. Thus, we are looking for a linear the components highlighted in red in gure 1d.
transformation of the eigenvectors that would yield a set of  For the applications discussed below, one would like to
nearly binary vectors. More formally, I& =[e!;::;e¥] be compare multiple grouping hypotheses, and thus measure
theN K matrix of eigenvectors. Our goal is thento nd a the quality of the resulting-matte asl(a) = a'La, where

set ofK linear combination vectorg that minimize L is the matting Laplacian (6). When a large number of hy-
o . kg . ‘o ‘ potheses is to be tested, multiplying each hypothesik by
ajafj9+j1 alj% wherea*= EY*  (7) might be too expensive. However, if each hypothesis is just
ik a sum of matting components we can pre-compute the cor-
subject toé ai" =1 relations between the matting componentslviand store
k theminaK K matrixF, where

If 0 < g< 1is used (in our implementatiogm= 0:9), then gy = kT 4l.

jai"jg+ il aikjg is a robust score measuring the sparsity of Flkl)=a" La: (10)

a matting component. Without the requiremerft= Ey The matte cost can then be computed as

the sparsity term would be minimized by binary vectors, but

as the vectora ¥ are restricted to linear combinations of the J(@)= b'Fb; (11)
eigenvectors they must maintain the fuzzy layer boundaries

Although we do not explicitly constrain the values to be ~ Whereb is a K dimensional binary vector indicating the
between 0 and 1, in practice the resulting values tend to lieSelected components. Thus,Ffhas been pre-computed,
in this range due to the sparsity penalty. The above cost isJ(a) can be evaluated iB(K?) operations instead @(N)

of course a non-convex one and we optimize it iteratively Operations.

using Newton's method [3] by constructing a sequence of 4 1 Unsupervised Matting

second order approximations (whose minimization involves . . .
the solution of &? K2 linear system). More details may G|ven an image and a set of matting components we
be found in [8] would like to split the components into foreground and

background groups and pull out a foreground object. If the
grouping criterion takes into account only low level cues,
then we just search for a grouping with the best matting
cost, as de ned by eq. (11). However, the matting cost is
usually biased toward mattes which assign non constant val-
ues only to a small subset of the image pixels (in the extreme
case, the best matte is a constant one). The spectral segmen-
tation literature suggest several criteria which overctimse
bias. One approach is to search for quotient cetg,(nor-
It can be shown that the resulting matting components Summhahzed Cl}fti [12]) wh|cr;1 score afcat as thle. rat|o| between
to one and thus provide a legal solution for eq. (7). the cost of the cut.and the size of the resulting clusters. A
In practice, we typically use a larger number of eigen- s_econd approach is to look fo_r balanced cuts [6] wher_e the
' size of each cluster is constrained to be above a certain per-

vectors than the number of matting components to be reCOV-cent of the image size. In this work, we follow this latter

:rz(:éel:ig]r% n;%r:nfs:g?'E\n/eegggso?iglfcﬁztlinpoorzslg;st%I(; ?:%'2 proach and rule out trivial solutions by considering only
P P ’ oupings which assign at least 30% of the pixels to the

span a richer set of vectors .('n the extreme case, iNall foreground and at least 30% of the pixels to the background.
eigenvectors are used, any binary vector can be generated). hen the numbeK of matting components is small we can

. enumerate all'® hypotheses and select the one with the best
4. Grouping Components score using eq. (11).

So far we have shown how matting components may be  Figure 3 shows some results produced by the unsuper-
extracted from the matting Laplacian. However, usually the Vised matting approach described above. In each of these
matting components are not a goal in their own, as one is ul-examples the hypothesis with the highest score indeed cor-
timately interested in recovering a complete matte for someresponds to the “correct” foreground matte, but some of
foreground object. Fortunately, all that is needed to obtai the other hypotheses are quite sensible as well, consider-
a complete matte is to specify which of the components be-ing that our approach does not attempt to perform any high-
long to the foreground. Suppos&t;::::ak were desig-  level image understanding. Of course, it isn't hard to nd
nated as foreground components, then the complete foreexamples where unsupervised matting fails. For example,
ground matte is obtained simply by adding them together: whenever the foreground or background objects consist of

several visually distinct components, the assignment with
a=a“+ +ak 9) the minimal matting cost might not correspond to our vi-

Since the cost (7) is not convex, the result of the New-
ton process strongly depends on the quality of the initializ
tion. One useful way to initialize the process is to appky a
means algorithm on the smallest eigenvectors of the matting
Laplacian and project the indicator vectors of the resgltin
clusters onto the span of the eigenvecters

ak= EETn’": ©)



Input Hypothesis 1 Hypothesis 2 Hypothesis 3 Hypothesis 4 Hypothesis 5
Figure 3. Unsupervised matting results for two images. The hypothesesdered according to their score.

sual perception. In fact, it is well known within the image
segmentation community that while unsupervised bottom-
up cues can ef ciently group coherent regions in an image,
the general image segmentation problem is inherently am-
biguous, and requires additional information. In practice Input Constraints Matte
such as in the case of hard image segmentation, the foreFigure 5. The middle region is not constrained, and the method of
ground/background assignment may be guided by severalevin et al. assigns it an average non-opaque value.
additional cues, such as top-down models [1], color statis- ) )
tics [11], or motion and focus cues. In the remainder of this Struct a matte given the user's constraints.
paper, however, we focus on user-guided matting instead. Figure 4 presents a few examples where a foreground
) ) matte was extracted from an image based on a small num-
4.2. User-Guided Matting ber of foreground (white) and background (black) markings
Matting components can also be quite useful in an inter- provided by the user. The second column shows the result-
active setting, where the user guides the matting process toing matte extracted by the approach described above (the
ward the extraction of the desired foreground matte. In suchscribbles are used to reduce the space of splitting hypothe-
a setting the foreground/background assignment of someSes: a component is constrained to belong to the foreground
of the components is determined by the user, thereby re-whenever its area contains a white scribble). The remaining
ducing the number of legal hypotheses to be tested. Givencolumns show the mattes generated from the same input by
very minimal foreground and background constraints, it is @ number of previous methods [7, 16, 4, 14]. None of these
usually possible to rule out trivial solutions, so thereds n previous approaches is able to recover a reasonable matte
need to explicitly keep the size of each group above a cer-from such minimal user input. In particular, although our
tain threshold (as in the unsupervised case). In this caseapproach uses the same matting Laplacian as [7], our results
we can approximate the matting cost (11) as a sum of pair-are very different from those obtained by directly minimiz-
wise terms. This enables us to approximate the search foiing the quadratic matting cost (5) subject to user-speci ed
the optimal foreground/background assignment as a min-constraints. The main drawback of such direct optimization
cut problem in a graph whose nodes are the matting com-is that whenever an image contains distinct connected com-
ponents, and whose edge weights represent matting penaltponents without any constraints inside them, a quadratic
(see [8] for details). In this formulation, nding the opti- cost such as (5) tends to assign them some average non-
mal assignment does not involve an exponential search and®pague values, as demonstrated by the simple example in
is found ef ciently in time polynomial in the number of Figure 5. The core of this problem is that the quadratic
components. As a result, if the matting components are pre-cost of [7] places strong assumptions on the foreground and
computed, the optimal matte may be computed very rapidly, background distributions, but imposes no restrictiongon
enabling interactive responses to user input. The computa-Thus, it searches forontinuoussolutions without taking
tional challenges of our algorithm are equivalent to those into account that, for a mostly opaque foreground object,
of conventional spectral segmentation techniques. Specif the matte should be strictly 0 or 1 over most of the image.
ically, it takes our unoptimized matlab implementation a  Once the matting components of an image have been
couple of minutes to compute the matting components for computed, placing hard constraints by a set of scribbles or a
the images in Figure 4. However, this pre-processing steptrimap is not the only way for the user to specify her intent.
can be done of ine, and once the matting components areThe matting components suggest a new, more direct user
available, it only takes an additional few seconds to con- interaction mode which wasn't possible until now: in this




Input Our result Leviret al.[7]

Wang-Cohen [16] Random Walk [4] Poisson [14]

Figure 4. A comparison of mattes produced by different matting metiiodsminimal user input.
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Figure 6. Bene ts of direct component labeling.

(Figure 6c¢). The least squares matte of [7] populates these
areas with average gray values (Figure 6d). In contrast,
by searching for the cheapest assignment of matting com-
ponents consistent with the trimap, we obtain the matte in
Figure 6e. In this case no over-smoothing is observed, but
some of the fuzzy hair was not selected to belong to the
foreground. However, if the user is allowed to directly se-
lect three additional components (highlighted in red in-Fig
ure 6g) as foreground, we obtain the matte in Figure 6f.

5. Quantitative evaluation

To quantitatively evaluate our approach and compare
it with previous methods we captured ground truth data.
Three different dolls were photographed in front of a com-
puter monitor displaying seven different background im-
ages (Figure 7a). A ground truth matte was then extracted
for each doll using a least squares framework [13]. Each im-
age was downsampled to 56@20 pixels, and the tests de-
scribed below were performed on (overlapping) 20200
windows cropped from these images. For our approach, 60
matting components were extracted using the 70 smallest
eigenvectors of each cropped window. The running time
of our unoptimized matlab implementation (on a 3.2GHz
CPU) was a few minutes for each 20@00 window.

To design a comparison between matte extraction using
matting components and previous matting algorithms we
need to address the two non compatible interfaces, and it is
not clear how to measure the amount of user effort involved
in each case. While previous approaches were designed to

mode the user is presented with the precomputed mattingwork with hard constraints (scribbles or trimap) our new
components and may simply label some of them as back-approach enables a new interaction mode by component se-
ground or foreground. The labeled components then be-lection. Therefore, in our experiments we attempted to de-
come constrained accordingly in the min-cut problem. The termine how well can each approach do, given the best pos-
advantage of such an interface is illustrated in Figure 6, sible user input. Thus, we rst used the ground truth matte
where the large fuzzy hair areas do not lend themselvesto generate an “ideal” trimap. The unknown region in this
to placement of hard constraints. Thus, the best trimaptrimap was constructed by taking all pixels whose ground
we could practically expect leaves such areas unconstraine truth matte values are betweer®d and (95, and dilating
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Figure 7. Quantitative evaluation

the resulting region by 4 pixels. The resulting trimap was two approaches. We rst extract matting components from
used as input for four previous matting algorithms: Levin each of the testimages and select the subset of matting com-
et al. [7], Wang and Cohen [16], random walk matting [4], ponents which will minimize the distance from the ground
and Poisson matting [14]. We also ran our method twice truth matte. The second approach is to select a subset of
in each experiment: (i) using the same trimap to provide a hard components (we used the available implementation of
partial labeling of the matting components, followed by a Yu and Shi [18]) that best approximates the ground truth.
min-cut computation, as described in section 4.2; and (ii) We then apply morphological operations (we have experi-
using the ground truth matte to select the subset of mat-mented with several constant radius erosion windows) on
ting components that minimizes the distance of the result-the resulting hard mask, create a trimap and run the mat-
ing matte from the ground truth, thus simulating the ideal ting algorithm of [7]. However, since the optimal radius
user input via the direct component picking interface. The of the erosion window strongly depends on the local image
SSD errors between the mattes produced by the differentstructure and varies over the image, it is impossible to ob-
methods and the ground truth matte (averaged over the diftain an ideal trimap with a constant radius window. This
ferent backgrounds and the different windows) are plotted problem is illustrated visually in the supplementary miater

in Figure 7b. It is apparent that given a suf ciently precise als. Figure 7c shows the SSD errors (averaged over the dif-
trimap, our method offers no real advantage (when given ferent backgrounds and the different windows) of the two
the same trimap as input) over the least-squares matting ofapproaches, which indicate that optimally picking the mat-
Levin et al, which produced the most numerically accurate ting components indeed results in more accurate mattes than
mattes. However, when simulating the best labeling of com- those obtained by feathering a hard segmentation.

ponents, our approach produced the most accurate mattes,

on average. 6. Discussion

While our experiment compares the quality of mattes | this work we have derived an analogy between hard
produced from an ideal input, a more interesting compar- spectral image segmentation and image matting, and have
ison might be to measure the amount of user time requiredshown how fundamental matting components may be au-
for extracting a satisfactory matte with each approach: Ide omatically obtained from the smallest eigenvectors of the
ally, we would also like to measure whether (or to what de- matting Laplacian. This is a new interesting theoretical re
gree) a component picking interface is more intuitive than a git, establishing a link between two previously indepen-
scribble based interface. Such a comparison involves a noryent research areas. From the practical standpoint, mattin
trivial user study, and is left for future work. components can help automate the matte extraction process

Given the strong analogy between spectral matting andand reduce user effort. Matting components also suggest a
hard spectral segmentation, we would like to gain some new mode of user control over the extracted matte: while
intuition about the possible advantage of using matting in previous methods the result is controlled by placement
components versus standard hard segmentation componengf hard constraints in image areas where the matte is either
(also known as super-pixels). The answer, of course, de-completely opaque or completely transparent, our new ap-
pends on the application. If the nal output is a hard seg- proach may provide the user with a simple intuitive preview
mentation, matting components probably do not offer an ad-of optional outputs, and thus enables the user to directly
vantage over standard hard components. On the other hand;ontrol the outcome in the fractional parts of the matte as
when the goal is a fuzzy matte it is better to explicitly con- well.
struct matting components, as we do, rather than rst com-  Limitations: Our method is most effective in automat-
pute a hard segmentation and then feather the boundariesg the matte extraction process for images that consist of a
(asin [11, 9], for example). To show this, we compare the modest number of visually distinct components. However,



as [16]. For example, the current strategy in [16] is to build
an initial color model using only the small number of pix-
els under the scribbles. This poor initialization is known t
make the algorithm sensitive to small shifts in the scribble
location.

Given the growing interest in the matting problem and
the large amount of recent matting research, it seems that
an important future challenge is the design of an appro-
priate comparison between different user interaction rmode
and different matting algorithms. The ground truth data col
lected in this work is a step toward this goal, yet a proper
user study is required in order to evaluate the amount of user
time required for producing good results with each method.

(@) (b) (©)
Figure 8. Limitations. Top: input image; Bottom: Ground truth
matte (a); Mattes from 70 (b) and 400 (c) eigenvectors.

for highly cluttered images, component extraction proves

Our code and ground truth data are available at:

to be a more challenging task. For example, consider theWww-vision.huiji.ac.il/SpectralMatting

example in Figure 8. The input image consists of a large
number of small components. Projecting the ground truth

matte (Figure 8a) on the subspace spanned by the 70 small-

est eigenvectors results in a poor approximation (Figuye 8b
Recall that since the matting components are obtained via a
linear combination of the eigenvectors, they can do no bet-
ter than the eigenvectors themselves, and thus Figure 8b is
the best matte that we could hope to construct from up to 70
matting components. Thus, it is quite clear that this number
of components is insuf cient to produce an accurate matte
for this image. A better matte may be obtained from the 400
smallest eigenvectors (Figure 8c), but even this mattekav
room for improvement. We have not been able to test more
than 400 eigenvectors due to computational limitations. We
have empirically observed that this problem is signi cgntl
reduced if matting components are computed in local im-
age windows independently. We are currently investigating
methods for stitching together components obtained in dif-
ferent windows.

One major challenge in spectral matting is determining

the appropriate number of matting components for a given [1

image. This is a fundamental dif culty shared by all spec-

tral segmentation methods. While the question of automat-11]

ically selecting the number of component has been investi-
gated (e.g. [19]), this parameter is still often manually ad
justed. For the applications described in this paper wedoun
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