
Spectral Matting

Anat Levin1,2 Alex Rav-Acha1 Dani Lischinski1

1School of CS & Eng 2CSAIL
The Hebrew University MIT

Abstract

We present spectral matting: a new approach to natural

image matting that automatically computes a set of funda-

mental fuzzy matting components from the smallest eigen-

vectors of a suitably defined Laplacian matrix. Thus, our

approach extends spectral segmentation techniques, whose

goal is to extract hard segments, to the extraction of soft

matting components. These components may then be used

as building blocks to easily construct semantically mean-

ingful foreground mattes, either in an unsupervised fashion,

or based on a small amount of user input.

1. Introduction

Digital matting is the process of extracting a foreground

object from an image along with an opacity estimate for

each pixel covered by the object. This operation enables

compositing the extracted object over a novel background,

and thus constitutes an invaluable tool in image editing,

video production, and special effects in motion pictures.

In particular, the challenging case of natural image mat-

ting, which poses no restrictions on the background, has

received much research attention. Recognizing that the

problem is inherently under-constrained, all of the exist-

ing methods require the user to provide additional con-

straints in the form of a trimap [2, 14, 4] or a set of brush

strokes [16, 7, 5]. Thus, the question of whether (or to what

degree) is it possible to automate the matting process, is of

considerable theoretical and practical interest.

In this paper we attempt to provide some new insights

into this question. Our work is strongly influenced by spec-

tral segmentation methods [12, 17, 10, 18]. These meth-

ods perform unsupervised image segmentation by examin-

ing the smallest eigenvectors of the image’s graph Laplacian

matrix. This work, for the first time, extends this idea from

producing hard segments to soft matting components.

Spectral segmentation methods, such as [12], resort to

computation of real-valued eigenvectors as an approxima-

tion necessary to transform an NP-complete optimization

problem into a tractable one. In contrast, we are not seeking

a disjoint image partitioning, but rather attempt to recover

the fractional foreground coverage at each pixel. Specif-

ically, we obtain our real-valued matting components via

a linear transformation of the smallest eigenvectors of the

matting Laplacian matrix, introduced by Levin et al. [7].

Once obtained, these matting components serve as building

blocks for construction of complete foreground mattes.

(a) Input image (b) Hard segmentation (c) Alpha matte

(d) Matting components computed by our method.

Figure 1. Spectral segmentation and spectral matting

This concept is illustrated in Figure 1. Given the input

image in Figure 1a, one can produce an unsupervised dis-

joint hard partitioning of the image using, e.g., [18] (Figure

1b). In contrast, we compute a set of overlapping, frac-

tional, matting components, visualized in Figure 1d. Com-

bining three of these components (framed in red) yields the

foreground matte of the girl, shown in Figure 1c.

In summary, our main contribution is the introduction of

the concept of fundamental matting components and the re-

sulting first unsupervised matting algorithm. Of course, just

like unsupervised segmentation, unsupervised matting is an

ill-posed problem. Thus, we also describe two extensions

that use these fundamental matting components to construct

a particular matte: (i) present the user with several matting

alternatives to choose from; or (ii) let the user specify her

intent by just a few mouse clicks.

2. Matting components

Matting algorithms typically assume that each pixel Ii in

an input image is a linear combination of a foreground color

Fi and a background color Bi:

Ii = αiFi +(1−αi)Bi. (1)

This is known as the compositing equation. In this work we

generalize the compositing equation by assuming that each

pixel is a convex combination of K image layers F1, . . . ,FK :

Ii =
K

∑
k=1

αk
i Fk

i . (2)

1

The K vectors αk are the matting components of the image,

which specify the fractional contribution of each layer to the

final color observed at each pixel. The matting components

are non-negative and sum to 1 at every pixel. The intuitive

motivation for having these components is that similarly

to the individual low-level fragments in an over-segmented

image they may be used to construct higher level, seman-

tically meaningful foreground mattes, as demonstrated in

Figure 1.

A desirable, although not required, property of the mat-

ting components is sparsity: each component should be ei-

ther completely opaque or completely transparent over as

many image pixels as possible. This means that areas of

transition between the different layers are limited to a small

number of pixels, and each pixel is influenced by a small

number of layers.

In this paper, we explore the relationship between the

matting components and the eigenvectors of the matting

Laplacian matrix [7]. Specifically, we show that under cer-

tain assumptions the matting components are spanned by

the smallest eigenvectors of the matting Laplacian. We then

propose a method for computing the matting components by

finding an appropriate linear transformation and applying it

to these eigenvectors.

3. Spectral Analysis

We start by briefly reviewing the basic theory of spec-

tral segmentation methods [12, 17, 10, 18]. These methods

typically associate with the image an N × N affinity ma-

trix A, such as A(i, j) = e−di j/σ2
, where di j is some mea-

sure of the distance between the pixels (such as color dif-

ference and geometric distance). One can then define the

Laplacian matrix L = D−A, where D is the diagonal ma-

trix D(i, i) = ∑ j A(i, j). L is a symmetric positive semidefi-

nite matrix, whose eigenvectors capture much of the image

structure.1

Consider the ideal case where the affinity matrix A cap-

tures exactly the fact that an image is composed from sev-

eral distinct clusters, or connected components. That is, a

subset C of the image pixels is a connected component of

the image if A(i, j) = 0 for every i, j such that i ∈C, j /∈C,

and there is no subset of C which satisfies this property. Let

mC denote the indicator vector of the component C,

mC
i =

{

1 i ∈C

0 i /∈C
,

then mC is an eigenvector of L with eigenvalue 0.

Now suppose that the image consists of K connected

components C1, . . . ,CK such that {1, . . . ,N} =
⋃K

k=1 Ck,

1In fact, most spectral segmentation papers consider normalized affinity

matrices such as D−1L or D−1/2LD−1/2. However, in this work we focus

on L itself as it is not clear how to justify the normalization in the case of

the matting Laplacian. The problem is that the off-diagonal elements of the

matting Laplacian can be both negative and positive, and thus the matting

cost cannot be expressed as a sum of positive pairwise terms.

where Ck are disjoint subsets of pixels. In this case the indi-

cator vectors mC1
, . . . ,mCK

are all independent, orthogonal

eigenvectors of L with eigenvalue 0. However, computing

the eigenvectors of L yields these indicator vectors only up

to rotation. This is the case since for any K ×K rotation

matrix R the vectors [mC1
, . . . ,mCK

]R are also a basis for the

nullspace of L.

In real images, the affinity matrix A is rarely able to per-

fectly separate between the different pixel clusters. There-

fore, the Laplacian L usually does not have multiple eigen-

vectors with zero eigenvalue. However, it has been ob-

served that the smallest eigenvectors of L tend to be nearly

constant within coherent image components. Extracting

the different components from the smallest eigenvectors is

known as spectral rounding and has attracted much atten-

tion [10, 18, 15, 19, 6]. The simplest approach [10] is to

cluster the image pixels using the k-means algorithm, and

use perturbation analysis to bound the error of this algo-

rithm as a function of the connectivity within and between

clusters. Other more recent methods [18, 19], which in-

spired the approach taken in this work, explicitly search

for a rotation matrix that brings the eigenvectors as close

as possible to binary indicator vectors.

3.1. Spectral Analysis with the Matting Laplacian

Our goal in this work is to derive an analogy between

hard segmentation and matting and to show that fuzzy mat-

ting components may be extracted from the smallest eigen-

vectors of the matting Laplacian, similarly to the extraction

of hard clusters described earlier.

The matting Laplacian was introduced by Levin et al. [7]

in order to evaluate the quality of a matte without explicitly

estimating the foreground and background colors in eq. (1).

They show that if the colors of the background and the fore-

ground within a local image window w form two different

lines in RGB space, then the α values within w may be ex-

pressed as a linear combination of the color channels:

∀i ∈ w αi = aRIR
i +aGIG

i +aBIB
i +b (3)

Thus, the matte extraction problem becomes one of finding

the alpha matte that minimizes the deviation from the linear

model (3) over all image windows wq:

J(α,a,b)= ∑
q∈I

∑
i∈wq

(

αi −aR
q IR

i −aG
q IG

i −aB
q IB

i −bq

)2
+ε‖aq‖

2

(4)

where ε‖aq‖
2 is a regularization term on a. The linear

model coefficients a,b may be eliminated from equation (4),

yielding a quadratic cost in α alone,

J(α) = αT Lα. (5)

Here L is the matting Laplacian, a sparse symmetric posi-
tive semidefinite N ×N matrix whose entries are a function
of the input image in local windows, depending neither on
the unknown foreground and background colors, nor on the

linear model coefficients. L(i, j) is defined as:

∑
q|(i, j)∈wq

(

δi j −
1

|wq|

(

1+(Ii −µq)
T (Σq +

ε

|wq|
I3)

−1(I j −µq)

))

(6)

Here δi j is the Kronecker delta, µq is the 3×1 mean color

vector in the window wq around pixel q, Σq is a 3× 3 co-

variance matrix in the same window, |wq| is the number of

pixels in the window, and I3 is the 3×3 identity matrix.

The cost (5) has a trivial minimum which is a constant

α vector, and thus in the user assisted framework described

in [7], J(α) is minimized subject to user constraints. Levin

et al. observe that the smallest eigenvectors of the matting

Laplacian (6) capture information about the fuzzy cluster

assignments of pixels in the image, even before any user-

specified constraints are taken into account. However, they

make no use of the eigenvectors beyond presenting them

to the user as guides for scribble placement. In this work,

we show that the smallest eigenvectors span the individual

matting components of the image.

To gain some understanding, we begin by studying the

ideal case. To justify the usage of spectral analysis to es-

timate matting components, our goal is to show that under

reasonable conditions, the actual matting components be-

long to the nullspace of the matting Laplacian. We say that

a matting component αk is active in a local image window w

if there exists a pixel i ∈ w for which αk
i > 0. The following

claim states the conditions on the local color distribution in

each layer, under which Lαk = 0. The severity of the con-

ditions is related to the number of active layers in a local

window. The least restricted case is when only one layer is

active, in which the local color distribution can be arbitrary

complex. The most restricted case is when a window con-

tains three active layers (as in the case of a T-junction), and

for such windows the color of each layer must be locally

uniform.

Claim 1 Let α1, . . . ,αK be the actual decomposition of the

image I into k matting components. The vectors α1, . . . ,αK

lie in the nullspace of the matting Laplacian L (given by

eq. 6 with ε = 0) if every local image window w satisfies

one of the following conditions:

1. A single component αk is active within w.

2. Two components αk1 ,αk2 are active within w and the

colors of the corresponding layers Fk1 ,Fk2 within w

lie on two different lines in RGB space.

3. Three components αk1 ,αk2 ,αk3 are active within w,

each layer Fk1 ,Fk2 ,Fk3 has a constant color within w,

and the three colors are linearly independent.

Proof: The matting cost (5) measures the deviation between

a matte and a linear function of the color channels, over

all local windows (eq. 4). Thus, in order to show that a

matte component αk satisfies Lαk = 0 it suffices to show

that for every local window w, there exist aR,aG,aB,b such

Figure 2. The smallest eigenvectors of the matting Laplacian for

the image in figure 1a. Linear combinations of these eigenvectors

produced the matting components shown in figure 1d.

that: αk
i = aRIR

i +aGIG
i +aBIB

i +b, ∀i ∈ w. Below we show

this for each of the three window types.

Case 1: Since the matting components sum to one at every

image pixel, the single active component αk must equal 1

within w. Thus, it is easily expressed as a linear function of

the image by setting aR = aG = aB = 0 and b = 1.

Case 2: This case is equivalent to theorem 2 in [7].

Case 3: Since Fk1 ,Fk2 ,Fk3 are constant within w and their

colors are linearly independent, there exist aR,aG,aB and

b such that 〈a,Fk1〉+b = 1, 〈a,Fk2〉+b = 0 and 〈a,Fk3〉+
b = 0. As I = αk1 Fk1 +αk2Fk2 +αk3Fk3 we get that 〈a, I〉+
b = αk1 , so that αk1 is a linear function of the image. A

similar argument holds for αk2 and αk3 .

As in the case of standard Laplacians, when the small-

est eigenvectors of the matting Laplacian are computed, the

result may be any linear combination of the different mat-

ting components, and recovering the individual components

is equivalent to linearly transforming the eigenvectors. It

should be noted that unlike hard segments, the matting com-

ponents are not binary vectors and thus are not necessar-

ily orthogonal. Hence, while the eigenvectors are orthogo-

nal, the transformation from eigenvectors to matting com-

ponents might be a general linear transformation and not a

simple rotation.

To summarize, the main conclusion of the above discus-

sion is that whenever the matting components of an image

satisfy the conditions of claim 1, they may be expressed as

a linear combination of the zero eigenvectors of L.

In most real images, the assumptions of claim 1 don’t

hold exactly, and thus the matting Laplacian might not have

multiple eigenvectors whose eigenvalue is 0. Yet if the lay-

ers are sufficiently distinct, they are generally captured by

the smallest eigenvectors of L. For example, Figure 2 shows

the smallest eigenvectors for a real image, all exhibiting the

fuzzy layer boundaries. We have empirically observed that

the matting components of real images are usually spanned

quite well by the smallest eigenvectors of the matting Lapla-

cian. Indeed, the components shown in Figure 1d were ob-

tained as linear combinations of the smallest eigenvectors.

3.2. From Eigenvectors to Matting Components

As explained above, recovering the matting components

of the image is equivalent to finding a linear transforma-

tion of the eigenvectors. Recall that the matting components

should sum to 1 at each image pixel, and they should be near

0 or 1 for most image pixels, since the majority of image

pixels are usually opaque. Thus, we are looking for a linear

transformation of the eigenvectors that would yield a set of

nearly binary vectors. More formally, let E = [e1, ..,eK] be

the N ×K matrix of eigenvectors. Our goal is then to find a

set of K linear combination vectors yk that minimize

∑
i,k

|αk
i |

γ + |1−αk
i |

γ , where αk = Eyk (7)

subject to ∑
k

αk
i = 1

If 0 < γ < 1 is used (in our implementation γ = 0.9), then

|αk
i |

γ + |1−αk
i |

γ is a robust score measuring the sparsity of

a matting component. Without the requirement αk = Eyk

the sparsity term would be minimized by binary vectors, but

as the vectors αk are restricted to linear combinations of the

eigenvectors they must maintain the fuzzy layer boundaries.

Although we do not explicitly constrain the α values to be

between 0 and 1, in practice the resulting values tend to lie

in this range due to the sparsity penalty. The above cost is

of course a non-convex one and we optimize it iteratively

using Newton’s method [3] by constructing a sequence of

second order approximations (whose minimization involves

the solution of a K2 ×K2 linear system). More details may

be found in [8].

Since the cost (7) is not convex, the result of the New-

ton process strongly depends on the quality of the initializa-

tion. One useful way to initialize the process is to apply a k-

means algorithm on the smallest eigenvectors of the matting

Laplacian and project the indicator vectors of the resulting

clusters onto the span of the eigenvectors E:

αk = EET mCk

. (8)

It can be shown that the resulting matting components sum

to one and thus provide a legal solution for eq. (7).

In practice, we typically use a larger number of eigen-

vectors than the number of matting components to be recov-

ered. Using more eigenvectors makes it possible to obtain

sparser components. The reason is that more basis elements

span a richer set of vectors (in the extreme case, if all N

eigenvectors are used, any binary vector can be generated).

4. Grouping Components

So far we have shown how matting components may be

extracted from the matting Laplacian. However, usually the

matting components are not a goal in their own, as one is ul-

timately interested in recovering a complete matte for some

foreground object. Fortunately, all that is needed to obtain

a complete matte is to specify which of the components be-

long to the foreground. Suppose αk1 , . . . ,αkn were desig-

nated as foreground components, then the complete fore-

ground matte is obtained simply by adding them together:

α = αk1 + · · ·+αkn (9)

For example, the matte in figure 1c was obtained by adding

the components highlighted in red in figure 1d.

For the applications discussed below, one would like to

compare multiple grouping hypotheses, and thus measure

the quality of the resulting α-matte as J(α) = αT Lα , where

L is the matting Laplacian (6). When a large number of hy-

potheses is to be tested, multiplying each hypothesis by L

might be too expensive. However, if each hypothesis is just

a sum of matting components we can pre-compute the cor-

relations between the matting components via L and store

them in a K ×K matrix Φ, where

Φ(k, l) = αkT
Lα l . (10)

The matte cost can then be computed as

J(α) = bT Φb, (11)

where b is a K dimensional binary vector indicating the

selected components. Thus, if Φ has been pre-computed,

J(α) can be evaluated in O(K2) operations instead of O(N)
operations.

4.1. Unsupervised Matting

Given an image and a set of matting components we

would like to split the components into foreground and

background groups and pull out a foreground object. If the

grouping criterion takes into account only low level cues,

then we just search for a grouping with the best matting

cost, as defined by eq. (11). However, the matting cost is

usually biased toward mattes which assign non constant val-

ues only to a small subset of the image pixels (in the extreme

case, the best matte is a constant one). The spectral segmen-

tation literature suggest several criteria which overcome this

bias. One approach is to search for quotient cuts (e.g., nor-

malized cuts [12]) which score a cut as the ratio between

the cost of the cut and the size of the resulting clusters. A

second approach is to look for balanced cuts [6] where the

size of each cluster is constrained to be above a certain per-

cent of the image size. In this work, we follow this latter

approach and rule out trivial solutions by considering only

groupings which assign at least 30% of the pixels to the

foreground and at least 30% of the pixels to the background.

When the number K of matting components is small we can

enumerate all 2K hypotheses and select the one with the best

score using eq. (11).

Figure 3 shows some results produced by the unsuper-

vised matting approach described above. In each of these

examples the hypothesis with the highest score indeed cor-

responds to the “correct” foreground matte, but some of

the other hypotheses are quite sensible as well, consider-

ing that our approach does not attempt to perform any high-

level image understanding. Of course, it isn’t hard to find

examples where unsupervised matting fails. For example,

whenever the foreground or background objects consist of

several visually distinct components, the assignment with

the minimal matting cost might not correspond to our vi-

Input Hypothesis 1 Hypothesis 2 Hypothesis 3 Hypothesis 4 Hypothesis 5

Figure 3. Unsupervised matting results for two images. The hypotheses are ordered according to their score.

sual perception. In fact, it is well known within the image

segmentation community that while unsupervised bottom-

up cues can efficiently group coherent regions in an image,

the general image segmentation problem is inherently am-

biguous, and requires additional information. In practice,

such as in the case of hard image segmentation, the fore-

ground/background assignment may be guided by several

additional cues, such as top-down models [1], color statis-

tics [11], or motion and focus cues. In the remainder of this

paper, however, we focus on user-guided matting instead.

4.2. User-Guided Matting

Matting components can also be quite useful in an inter-

active setting, where the user guides the matting process to-

ward the extraction of the desired foreground matte. In such

a setting the foreground/background assignment of some

of the components is determined by the user, thereby re-

ducing the number of legal hypotheses to be tested. Given

very minimal foreground and background constraints, it is

usually possible to rule out trivial solutions, so there is no

need to explicitly keep the size of each group above a cer-

tain threshold (as in the unsupervised case). In this case

we can approximate the matting cost (11) as a sum of pair-

wise terms. This enables us to approximate the search for

the optimal foreground/background assignment as a min-

cut problem in a graph whose nodes are the matting com-

ponents, and whose edge weights represent matting penalty

(see [8] for details). In this formulation, finding the opti-

mal assignment does not involve an exponential search and

is found efficiently in time polynomial in the number of

components. As a result, if the matting components are pre-

computed, the optimal matte may be computed very rapidly,

enabling interactive responses to user input. The computa-

tional challenges of our algorithm are equivalent to those

of conventional spectral segmentation techniques. Specif-

ically, it takes our unoptimized matlab implementation a

couple of minutes to compute the matting components for

the images in Figure 4. However, this pre-processing step

can be done offline, and once the matting components are

available, it only takes an additional few seconds to con-

Input Constraints Matte

Figure 5. The middle region is not constrained, and the method of

Levin et al. assigns it an average non-opaque value.

struct a matte given the user’s constraints.

Figure 4 presents a few examples where a foreground

matte was extracted from an image based on a small num-

ber of foreground (white) and background (black) markings

provided by the user. The second column shows the result-

ing matte extracted by the approach described above (the

scribbles are used to reduce the space of splitting hypothe-

ses: a component is constrained to belong to the foreground

whenever its area contains a white scribble). The remaining

columns show the mattes generated from the same input by

a number of previous methods [7, 16, 4, 14]. None of these

previous approaches is able to recover a reasonable matte

from such minimal user input. In particular, although our

approach uses the same matting Laplacian as [7], our results

are very different from those obtained by directly minimiz-

ing the quadratic matting cost (5) subject to user-specified

constraints. The main drawback of such direct optimization

is that whenever an image contains distinct connected com-

ponents without any constraints inside them, a quadratic

cost such as (5) tends to assign them some average non-

opaque values, as demonstrated by the simple example in

Figure 5. The core of this problem is that the quadratic

cost of [7] places strong assumptions on the foreground and

background distributions, but imposes no restrictions on α .

Thus, it searches for continuous solutions without taking

into account that, for a mostly opaque foreground object,

the matte should be strictly 0 or 1 over most of the image.

Once the matting components of an image have been

computed, placing hard constraints by a set of scribbles or a

trimap is not the only way for the user to specify her intent.

The matting components suggest a new, more direct user

interaction mode which wasn’t possible until now: in this

Input Our result Levin et al. [7] Wang-Cohen [16] Random Walk [4] Poisson [14]

Figure 4. A comparison of mattes produced by different matting methods from minimal user input.

(a) (b) Input (c) Trimap

(d) Levin et al. [7]
from trimap

(e) Components
from trimap

(f) Component
labeling

(g) Matting components

Figure 6. Benefits of direct component labeling.

mode the user is presented with the precomputed matting

components and may simply label some of them as back-

ground or foreground. The labeled components then be-

come constrained accordingly in the min-cut problem. The

advantage of such an interface is illustrated in Figure 6,

where the large fuzzy hair areas do not lend themselves

to placement of hard constraints. Thus, the best trimap

we could practically expect leaves such areas unconstrained

(Figure 6c). The least squares matte of [7] populates these

areas with average gray values (Figure 6d). In contrast,

by searching for the cheapest assignment of matting com-

ponents consistent with the trimap, we obtain the matte in

Figure 6e. In this case no over-smoothing is observed, but

some of the fuzzy hair was not selected to belong to the

foreground. However, if the user is allowed to directly se-

lect three additional components (highlighted in red in Fig-

ure 6g) as foreground, we obtain the matte in Figure 6f.

5. Quantitative evaluation

To quantitatively evaluate our approach and compare

it with previous methods we captured ground truth data.

Three different dolls were photographed in front of a com-

puter monitor displaying seven different background im-

ages (Figure 7a). A ground truth matte was then extracted

for each doll using a least squares framework [13]. Each im-

age was downsampled to 560×820 pixels, and the tests de-

scribed below were performed on (overlapping) 200× 200

windows cropped from these images. For our approach, 60

matting components were extracted using the 70 smallest

eigenvectors of each cropped window. The running time

of our unoptimized matlab implementation (on a 3.2GHz

CPU) was a few minutes for each 200×200 window.

To design a comparison between matte extraction using

matting components and previous matting algorithms we

need to address the two non compatible interfaces, and it is

not clear how to measure the amount of user effort involved

in each case. While previous approaches were designed to

work with hard constraints (scribbles or trimap) our new

approach enables a new interaction mode by component se-

lection. Therefore, in our experiments we attempted to de-

termine how well can each approach do, given the best pos-

sible user input. Thus, we first used the ground truth matte

to generate an “ideal” trimap. The unknown region in this

trimap was constructed by taking all pixels whose ground

truth matte values are between 0.05 and 0.95, and dilating

0

200

400

600

800

1000

1200

 Monster Lion Monkey

A
v
e
ra

g
e
 L

2
 E

rr
o
r

Components (picking)

Levin et al. (trimap)

Components (trimap)

Wang and Cohen (trimap)

Random walk (trimap)

Poisson (trimap)

0

200

400

600

800

1000

1200

 Monster Lion Monkey

A
v
e
ra

g
e
 L

2
 E

rr
o
r

Components (picking)

Erosion (masksize=6)

Erosion (masksize=15)

Erosion (masksize=30)

Erosion (masksize=60)

(a) Three of the test images (b) A comparison with other matting methods (c) Spectral matting vs. hard segmentation

Figure 7. Quantitative evaluation

the resulting region by 4 pixels. The resulting trimap was

used as input for four previous matting algorithms: Levin

et al. [7], Wang and Cohen [16], random walk matting [4],

and Poisson matting [14]. We also ran our method twice

in each experiment: (i) using the same trimap to provide a

partial labeling of the matting components, followed by a

min-cut computation, as described in section 4.2; and (ii)

using the ground truth matte to select the subset of mat-

ting components that minimizes the distance of the result-

ing matte from the ground truth, thus simulating the ideal

user input via the direct component picking interface. The

SSD errors between the mattes produced by the different

methods and the ground truth matte (averaged over the dif-

ferent backgrounds and the different windows) are plotted

in Figure 7b. It is apparent that given a sufficiently precise

trimap, our method offers no real advantage (when given

the same trimap as input) over the least-squares matting of

Levin et al., which produced the most numerically accurate

mattes. However, when simulating the best labeling of com-

ponents, our approach produced the most accurate mattes,

on average.

While our experiment compares the quality of mattes

produced from an ideal input, a more interesting compar-

ison might be to measure the amount of user time required

for extracting a satisfactory matte with each approach. Ide-

ally, we would also like to measure whether (or to what de-

gree) a component picking interface is more intuitive than a

scribble based interface. Such a comparison involves a non

trivial user study, and is left for future work.

Given the strong analogy between spectral matting and

hard spectral segmentation, we would like to gain some

intuition about the possible advantage of using matting

components versus standard hard segmentation components

(also known as super-pixels). The answer, of course, de-

pends on the application. If the final output is a hard seg-

mentation, matting components probably do not offer an ad-

vantage over standard hard components. On the other hand,

when the goal is a fuzzy matte it is better to explicitly con-

struct matting components, as we do, rather than first com-

pute a hard segmentation and then feather the boundaries

(as in [11, 9], for example). To show this, we compare the

two approaches. We first extract matting components from

each of the test images and select the subset of matting com-

ponents which will minimize the distance from the ground

truth matte. The second approach is to select a subset of

hard components (we used the available implementation of

Yu and Shi [18]) that best approximates the ground truth.

We then apply morphological operations (we have experi-

mented with several constant radius erosion windows) on

the resulting hard mask, create a trimap and run the mat-

ting algorithm of [7]. However, since the optimal radius

of the erosion window strongly depends on the local image

structure and varies over the image, it is impossible to ob-

tain an ideal trimap with a constant radius window. This

problem is illustrated visually in the supplementary materi-

als. Figure 7c shows the SSD errors (averaged over the dif-

ferent backgrounds and the different windows) of the two

approaches, which indicate that optimally picking the mat-

ting components indeed results in more accurate mattes than

those obtained by feathering a hard segmentation.

6. Discussion

In this work we have derived an analogy between hard

spectral image segmentation and image matting, and have

shown how fundamental matting components may be au-

tomatically obtained from the smallest eigenvectors of the

matting Laplacian. This is a new interesting theoretical re-

sult, establishing a link between two previously indepen-

dent research areas. From the practical standpoint, matting

components can help automate the matte extraction process

and reduce user effort. Matting components also suggest a

new mode of user control over the extracted matte: while

in previous methods the result is controlled by placement

of hard constraints in image areas where the matte is either

completely opaque or completely transparent, our new ap-

proach may provide the user with a simple intuitive preview

of optional outputs, and thus enables the user to directly

control the outcome in the fractional parts of the matte as

well.

Limitations: Our method is most effective in automat-

ing the matte extraction process for images that consist of a

modest number of visually distinct components. However,

(a) (b) (c)

Figure 8. Limitations. Top: input image; Bottom: Ground truth

matte (a); Mattes from 70 (b) and 400 (c) eigenvectors.

for highly cluttered images, component extraction proves

to be a more challenging task. For example, consider the

example in Figure 8. The input image consists of a large

number of small components. Projecting the ground truth

matte (Figure 8a) on the subspace spanned by the 70 small-

est eigenvectors results in a poor approximation (Figure 8b).

Recall that since the matting components are obtained via a

linear combination of the eigenvectors, they can do no bet-

ter than the eigenvectors themselves, and thus Figure 8b is

the best matte that we could hope to construct from up to 70

matting components. Thus, it is quite clear that this number

of components is insufficient to produce an accurate matte

for this image. A better matte may be obtained from the 400

smallest eigenvectors (Figure 8c), but even this matte leaves

room for improvement. We have not been able to test more

than 400 eigenvectors due to computational limitations. We

have empirically observed that this problem is significantly

reduced if matting components are computed in local im-

age windows independently. We are currently investigating

methods for stitching together components obtained in dif-

ferent windows.

One major challenge in spectral matting is determining

the appropriate number of matting components for a given

image. This is a fundamental difficulty shared by all spec-

tral segmentation methods. While the question of automat-

ically selecting the number of component has been investi-

gated (e.g. [19]), this parameter is still often manually ad-

justed. For the applications described in this paper we found

that a useful strategy is to over-segment the image and group

the components later using additional cues. A second free

parameter in the algorithm is the number of smallest eigen-

vectors from which the components are formed (the number

should be larger or equal to the number of components). In

practice, we have observed that the performance is not very

sensitive to this number and all results in this paper were

obtained using the 70 smallest eigenvectors.

Future directions: An important potential advantage of

pre-segmenting the image into matting components is the

option to compute meaningful color or texture histograms,

or other statistics, within each component. The histogram

similarity can provide another important cue to guide com-

ponent grouping. This ability might significantly improve

matting algorithms which make use of color models such

as [16]. For example, the current strategy in [16] is to build

an initial color model using only the small number of pix-

els under the scribbles. This poor initialization is known to

make the algorithm sensitive to small shifts in the scribble

location.

Given the growing interest in the matting problem and

the large amount of recent matting research, it seems that

an important future challenge is the design of an appro-

priate comparison between different user interaction modes

and different matting algorithms. The ground truth data col-

lected in this work is a step toward this goal, yet a proper

user study is required in order to evaluate the amount of user

time required for producing good results with each method.
Our code and ground truth data are available at:

www.vision.huji.ac.il/SpectralMatting

References

[1] E. Borenstein and S. Ullman. Class-specific, top-down seg-

mentation. In ECCV, 2002.

[2] Y. Chuang, B. Curless, D. Salesin, and R. Szeliski. A

Bayesian approach to digital matting. In CVPR, 2001.

[3] J. Dennis, J. Robert, and B. Schnabel. Numerical Methods

for Unconstrained Optimization and Nonlinear Equations.

Prentice-Hall, 1983.

[4] L. Grady, T. Schiwietz, S. Aharon, and R. Westermann. Ran-

dom walks for interactive alpha-matting. In VIIP, 2005.

[5] Y. Guan, W. Chen, X. Liang, Z. Ding, and Q. Peng. Easy

matting. In Eurographics, 2006.

[6] K. Lang. Fixing two weaknesses of the spectral method. In

NIPS. 2005.

[7] A. Levin, D. Lischinski, and Y. Weiss. A closed form solu-

tion to natural image matting. In CVPR, 2006.

[8] A. Levin, A. Rav-Acha, and D. Lischinski. Spectral matting.

Hebrew University Technical Report, May 2007.

[9] Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum. Lazy snapping.

ACM Trans. Graph., 23(3):303–308, 2004.

[10] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering:

Analysis and an algorithm. In NIPS. 2001.

[11] C. Rother, V. Kolmogorov, and A. Blake. “GrabCut”: inter-

active foreground extraction using iterated graph cuts. ACM

Trans. Graph., 23(3):309–314, 2004.

[12] J. Shi and J. Malik. Normalized cuts and image segmenta-

tion. PAMI, 22(8):888–905, 2000.

[13] A. Smith and J. Blinn. Blue screen matting. In Proceedings

of ACM Siggraph, pages 259–268, 1996.

[14] J. Sun, J. Jia, C.-K. Tang, and H.-Y. Shum. Poisson matting.

ACM Trans. Graph., 23(3):315–321, 2004.

[15] D. Tolliver and G. Miller. Graph partitioning by spectral

rounding: Applications in image segmentation and cluster-

ing. In CVPR, 2006.

[16] J. Wang and M. Cohen. An iterative optimization approach

for unified image segmentation and matting. In ICCV, 2005.

[17] Y. Weiss. Segmentation using eigenvectors: A unifying view.

In ICCV, pages 975–982, 1999.

[18] S. X. Yu and J. Shi. Multiclass spectral clustering. In ICCV,

pages 313–319, 2003.

[19] L. Zelnik-Manor and P. Perona. Self-tuning spectral cluster-

ing. In NIPS. 2005.

